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The theoretical methodology for including the effects of the geometric phase in quantum reactive scattering
and bound-state calculations is reviewed. Two approaches are discussed: one approach is based on solving
the standard BornOppenheimer equation but with double-valued boundary conditions, and the second approach
is based on solving a generalized Be@ppenheimer equation with single-valued boundary conditions. The
generalized BorrOppenheimer equation contains a vector potential which is mathematically equivalent to
that of a magnetic solenoid. The recently developed numerical methodology for solving the generalized Born
Oppenheimer equation is reviewed, and several applications of this methodology in chemical reaction dynamics
and molecular spectra are discussed. New results from accurate six dimensional quantum reactive scattering
calculations for the Bt Hx(v, j) — HD(/, |') + H and H+ Ha(v, j) — Ha(¢', j') + H reactions are presented.

These calculations are performed both with and without the geometric phase. The geometric phase calculations
are done using both the double-valued basis set approach and vector potential approach. The effects of the
geometric phase in the reaction probabilities, integral, and differential cross sections are investigated as a
function of scattering energy and total angular momendum

I. Introduction and nondegenerate electronic states. In this case, the total
The standard theoretical treatment of chemical reaction Molecularwave function can be expressed in terms of a single
dynamics and molecular vibrations is based on the separation€lectronic state (usually the ground state). Thus, to a good
of the total molecular motion into fast and slow parts. The fast @PProximation, the nuclear motion is governed by an effective
motion corresponds to the motion of the electrons, and the slow Schalinger equation whose potential energy surface is deter-
motion corresponds to the motion of the nuclei. The theoretical Mined by solving the Schiinger equation for the ground
foundation for the separation of the electronic and nuclear €lectronic state at each nuclear geometry. This one-state
motion was first developed by Born and Oppenheifnerthis approximation is often referred to as the “Bet@ppen-
approach, the total molecular wave function is expanded in termsheimer approximation” and has been the foundation for the
of a set of electronic eigenfunctions which depend parametrically modern theory of electronically adiabatic processes. For high-
on the nuclear coordinates. The expansion coefficients are theenergy collisions or degenerate electronic states, the -Born
nuclear motion wave functions which satisfy a matrix Sehro Oppenheimer approximation can break down, and more than
dinger equation which includes off-diagonal coupling matrix One electronic state must often be included. For example, high-
elements with respect to the electronic quantum numbers. Theenergy collisions give rise to electronically nonadiabatic pro-
smallness of the electronic mass) relative to the nuclear mass  cesses (i.e., collision processes which change the electronic
(my) is used to obtain an asymptotic expansion of the total quantum numbers)Another situation for which the standard
molecular wave function, energy, and other quantities of interest Born—Oppenheimer method becomes inadequate is when a
in terms of the small parameter= (mymy)¥4.2-4 To lowest conical intersection occurs between the ground and an excited
order ink, the off-diagonal coupling terms can often be ignored electronic state. Conical intersections can alter the nuclear
for low-energy collisions, small amplitude molecular vibrations, dynamics even for low-energy collisions or vibrational motion
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for which the one-state approximation is valid. In this article, Section 2 presents the generalized Be@ppenheimer equa-
we consider the modifications to the standard Be@ppen- tion for the nuclear motion which takes into account the
heimer method which are required in order to account for the geometric phase effects due to a conical intersection. Section 3
effects of conical intersections on the nuclear dynamics for low- reviews the recently developed numerical methods for solving
energy collisions and vibrational motion on a ground-state the generalized BornOppenheimer equation. Several applica-
electronic potential energy surface. tions using this methodology are also discussed. Section 4
In 1963, Herzberg and Longuet-Higgishowed that a real ~ Presents new rgsults from accurate full dimensional quantum
adiabatic electronic wave function changes sign (i.e., it is a reactive scattering calculations for two fundamental chemical
double-valued function) when the nuclear coordinates traversereéactions: H+ Hy — H; + H and D+ H, — HD + H. A
a closed path which encircles a conical intersection. In order conical intersection occurs in theskholecule when all three
for the total molecular wave function to remain single-valued, Of the internuclear distances are equal (il2s, geometries).
a compensating sign change must also occur in the nucleart he effects of the geometric phase are |nvest_|gated by _solvmg
motion wave function. Furthermore, for molecules with two or POth the standard and generalized BeB@ppenheimer equations
more identical nuclei, the sign change must be accounted for fOr the nuclear motion and comparing the results. The reaction
in order for the total molecular wave function to satisfy the probabilities, |_ntegral, and differential cross sections for each
correct Bose-Fermi statistics under an interchange of any two ©f these reactions are presented as a function of total energy
identical nuclei. In 1979, Mead and Truhdrdiscussed two and tOtf'J‘I angular _momef.““m])( Section 5 presents some
approaches for including the sign change in the nuclear motion CONclusions regarding the importance of geometric phase effects
wave function. In one approach, a real double-valued electronic in chemical reaction dynamics and molecular vibrational spectra.
wave function is used and the correct nuclear motion wave
functions are obtained by solving the standard “Satger
equation for the nuclear motion but with double-valued boundary =~ The molecular Schdinger equation is given by
conditions. In the second approachcamplexsingle-valued
electronic wave function is used, and the correct nuclear motion HW=EWy 1)
wave functions are obtained by solving a generalized &iclger
equation for the nuclear motion with single-valued boundary
conditions. The complex single-valued electronic wave function

Il. Generalized Born—Oppenheimer Method

whereW is the total molecular wave functioH is the total
molecular Hamiltonian, ané is the total energy. We restrict
our present treatment to triatomic molecules so that there are

is obtained by multiplying the real double-valued electronic six nuclear coordinates relative to the center of mass. Three of
wave function by a complex phase factor which is a function Ix nucte rd v . o
these six are internal coordinates which are functions of the

of the nuclear coordinates. This phase factor changes sign for

any closed path which encircles a conical intersection so thatthree _mternucle_ar d|stan_ces. The_ remaining three are angular
. SO coordinates which specify the orientation of the body-frame
the complex electronic wave function is single-valued. The

. - L relative to the space-frame and are usually taken to be the three
electronic Schdinger equation is unchanged by the phase | les. The six nuclear coordinates are denoted=as
transformation so that the complex single-valued electronic wave Eu er angies. The s .

. . . . (X, X) wherex andX denote the three internal and three angular
function satisfies the same eigenvalue equation as the real - -
double-valued electronic wave function. However, the Seho coordinates, re;pectlvely. .
. . . L ’ . After separating out the center of mass motion, we can
inger equation for the nuclear motion acquires a vector potential expressH in space-frame coordinates as
(i.e., the momentum operatpr— p — A). This vector potential
comes from the gradient operator with respect to the nuclear R,
coordinates acting on the complex phase factor. The vector H=—-—v°+h(x) (2)
potential is nontrivial (i.e., it cannot be transformed or gauged 2l
away by using a single-valued phase transformation) and is\herev? is the six-dimensional Laplacian with respect to the
mathematically equivalent to that of a “magnetic solenoid” six nuclear coordinates, « is the three body reduced mass
centered at the conical intersection. The resulting”Sictyer = (ma Mme Me/(ma + ms + Me))2, andh(x) is the electronic
equation for the nuclear motion is identical to that of a charged Hamiltonian which depends parametrically on the three internal
particle moving in the presence of a magnetic solenoid. If the nuclear coordinates.
nuclear motion wave function has significant amplitude along ~ We neglect all electronic angular momentum (spin and
the entire minimum energy pathway encircling a conical orbital) so that the space-frame electronic eigenfunctign} (
intersection, significant interference effects will occur which depend parametrically on the three internal nuclear coordinates
can significantly alter the nuclear dynamics. These effects canx and can be chosen real orthogonal with real eigenvaigs(
occur for relatively small collision and vibrational energies
which are much smaller than the energy of the conical h(X) @n(r; X) = Vi(X) @n(r; X) 3)
intersection. The collision or vibrational energy only needs to
be larger than all of the potential energy barriers which may Wherer denotes all of the electronic coordinates. From now
occur a|ong the minimum energy pathway encirc”ng the conical on, we assume that accurate solutions to eq 3 are available or
intersection. Mead later called this effect the “molecular can be readily calculated.
Aharonov-Bohm effect”? In 1984, Berry® considered a general The total mo.lecqlar Wave.function can be expanded in terms
guantum system with parametric time dependence undergoing®f the electronic eigenfunctions
a cyclic adiabatic time evolution. He showed that the sign N
ic;hzngewhlch occurs in the “molecular Aharordohm effect W =S W (x) Xy )
pecial case of the more general geometric phase often
referred to as “Berry’s phase”. Berry’s influential paper gener-
ated much theoretical and experimental interest in this effect where the expansion coefficierti,(x) are the nuclear motion
which continues to this day. wave functions, angy"is the nuclear spin wave function. The

n=|
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number of electronic statésis in general infinite. Fortunately,
the smallness of the BorfOppenheimer parameterallows
one to truncate this infinite sum to some finite numbérlf
one substitutes eq 4 into eq 1, multiplies on the leftghyr;

X), integrates over, and uses eq 3, one obtains the following
matrix equation for the nuclear motion wave function to lowest
order ink (n=0, 1, 2, ...,N)1>14

N h2 N
nZO \Z kZQ (=i 5nkv - Ank(x))'(_i 6kmv -
Ar(X)) + 6nm(X)\ W (x) =EW(x) (5)

where the vector nonadiabatic coupling matrix elements are
given by
Anr¥) =1 @91V ]@n ()0

The effective scalar potential is given By

Enm(x) = Vn(x) énm -

2
o > @IV ()T X (VIen)D (7)
1Zn,m

The scalar potential given in eq 7 contains mass dependen
contributions which involve derivative coupling matrix elements

(6)

between the electronic subspace of interest and the excited .

electronic states. For low collision energies or small amplitude
vibrational motion, these contributions have the effect of a small
correction (proportional ta*) to the potential energy/n(x).
From now on, we ignore these small corrections and take
enm(X) = Vn(X) onm However, near a conical intersection (i.e.,
for high collision energies which approach the energy of the

t
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Figure 1. Perspective plot of a two-dimensional slice of a potential
energy surface near a conical intersection. The degeneracy point is
located at the origin in thew plane. The radial distance from the
intersection is denoted by and the azimuthal angle around the
intersection denoted by. The adiabatic ground-state real electronic
wave function changes sign for any closed pattuinspace which
encircles the origin (such as the dashed cuye

space 7519 Two conditionsu(x) = 0 andy(x) = 0 define the
subspace”, and these can be expressed in terms of any two
diagonal cofactors of the matrix(x) = h(x) — | Vo(X) where

h is the electronic Hamiltonian an¥, is the ground-state
eigenvalue® In an infinitesimal region neats, the relevant
part of the electronic Hamiltonian is a 2 2 matrix of the
form?.19

ou ov

e = _(611 —6u) = —r(coS77 siny

siny — cosy

) (10)

conical intersection), these contributions are not necessarily wheredu(x) anddu(x) are infinitesimal displacements from the
small. For diatomic molecules, they have been evaluated usingorigin in the two-dimensional Cartesian space spanned &y

specialized?16 and more conventional, electronic structure
techniques and also have been measured experimetitally.

In many applications, we can truncate the sum in eq 4 to
only one term. This case is often referred to as the “Born
Oppenheimer approximation”, and the molecular wave function
is given by

®)

wheren = 0 denotes the ground electronic state. For high

Wi & Wo(X) @o(r; X) o "

collision energies or degenerate electronic states, more terms

in the sum oven must often be included. From now on, we

andv e, (see Figure 1). The polar coordinates are denoted by
(r, 7) wherer is the radial distance from the origin tw space
and 7 is the azimuthal angle around the origin. The two
eigenvalues of eq 3 aré.(X) = £r which correspond to the
upper and lower cones in Figure 1. The two corresponding
eigenvectors are given by

—sinl cos’
+_ 2 - 2
cos2 sin 5

assume that eq 8 is valid and drop the subscript on the nuclearlt is clear that, because of the half-angle functional dependence

and electronic wave functions with the understanding that they
denote the ground electronic state. The Be@ppenheimer eq
5 for the nuclear motion becomes

2
[— LR V(x)] W(x) = E ¥(X) 9)
2u
In the derivation of eq 9, we used the fact thpéx)|v|@(x) =
0 which is straightforward to prove by differentiating the
normalization equatiofip(x)|@(X)0= 1 and using the fact that
|@(x)Uis real.
We denote thé-dimensional internal nuclear parameter space
by .7/ (d = 3 for triatomics) and the subspace.daf for which
a conical intersection occurs by C .7 The subspacé& is of
dimensiond — 2, and for triatomic molecules it is a one-

upon the azimuthal anglg these eigenvectors change sign (i.e.,
are double-valued) for any closed path in the nuclear parameter
space for whichy changes by 2. Equation 11 is valid only in
the infinitesimal region near the conical intersection. However,
the sign change (double-valuedness) exgtbally. That is,
any closed path inZ which encircles® (no matter how far
away from) results in a sign change in the adiabatic ground-
state real electronic eigenvecfdrThe global expression for
the angley is given byn(x) = tanm(v(x)/u(x)) which is in
general a complicated function of the three internal nuclear
coordinateg? Recently, techniques have been developed to
computen(x) for a general polyatomic molecut&23-25 How-
ever, for triatomic molecules (such ag,HHO,, and Na), a
suitable functional form for(x) can often be derived analyti-
cally.”11 1t is important to realize that the functional forms of

dimensional curve in the three-dimensional nuclear parameteru(x) and »(x) are not unique. Hencej(x) is not unique. The
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only requirement is thag(x) change by 2 for anyclosed path Upon substituting eq 15 into eq 17 or eq 16 into eq 18, we

in ./ which encircles”. This freedom in choosing is called find that By = —Izr which corresponds to a phase factor of
“gauge freedom” and different choices fpare related byJ(1) exp(—ilr) = —1. Thus, the sign change associated with a conical
gauge transformatiorfs-1.19.20.26 intersection can be given a geometrical interpretation. Equations
Following Mead and Truhlafwe multiply the real adiabatic 17 and 18 can be generalized to higher dimensions using the
electronic wave function by a complex phase language of differential geometry. Equation 17 can be expressed
as the line integral of a connection 1-form along the closed path
(p”(r; X) = exi{ilzﬂ(x)) o(r: %) (12) 6 a_nd the phase factor expg) the associated h(_)lonomy.
Similarly, eq 18 can be expressed as the surface integral of a

. . . ) curvature 2-form over the surfa@enclosed by10:19.27-31
where | is an odd integerand 5(x) is the azimuthal angle

discussed above which changes by far any nuclear motion
which encircles a conical intersection. The complex phase factor
cancels the sign change from the real electronic wave function
@(r; X) giving rise to a complesinglevaluedelectronic wave Although the generalized BorrOppenheimer eq 13 was first
functiong“(r; x). Itis straightforward to show that the different  gerived in 1979, numerical techniques for solving this equation
choices forl are related by gauge transformatidrisence, the  \yere developed only recently. Part of this delay is due to the
choice ofl is a maitter of convenience although larger values of singular nature of the vector potential which exhibits &
| cause the numerical calculations to converge more sl6W!.  singularity where denotes the radial distance from the conical

Using eq 12 and repeating the same steps which lead to eqgjntersection. Thus, until recently, geometric phase effects were
9, we obtain the generalized Bor®ppenheimer equation for  included in scattering and bound-state calculations by solving
the nuclear motiofyt~14.19 the standard Scluinger eq 9 but with double-valued boundary

2 conditions. For example, thesHnolecule contains a conical

h_(_i v =AM+ V)| PX)=EWx) (13) intersection which occurs for equilateral triang[s() geom-
2u etries. If one uses symmetrized hyperspherical coordinates, then
double-valued boundary conditions are relatively straightforward
to implement for this molecule by choosing the anglésee
Figure 1) equal to the azimuthal angl®f the 2D hypersphere.
Thus, geometric phase effects can be included in the calculations

[ll. Numerical Methodology for Solving the Generalized
Born—Oppenheimer Equation

where the nuclear motion wave functidfr(x) is singlevalued
andA(x) is the vector potential defined as

i G O
AKX =ilg (KI(VIg"(x)D) (14) by solving the standard BorrOppenheimer eq 9 but expanding
Substituting eq 12 into eq 14, we can write the vector potential the solutions in terms of a double-valued basis set such as
as expli(m+ 1/2) ¢] (wheremis an integer). This is the approach

used by Kuppermann and co-worké?s3 However, for other
coordinate systems, for more complicated molecules, or when
AX) = - 2 v 1(x) (19) the conical intersection is not located at the symmetry point of
the hyperspherical coordinates, the double-valued boundary
Equation 15 has the same mathematical form as the vectorconditions can be difficult to implement. For these more
potential of a magnetic solenoid located at the conical complicated cases, the vector potential approach which is based
intersectior. %19 By taking the curl of eq 15, we find that the  on solving the generalized BorOppenheimer eq 13 with
corresponding “magnetic field” is zero everywhere except at single-valued boundary conditions is often more convenient. In
the conical intersection where it has a delta function singularity 1994, Wu, Wyatt, and D'Mell# included geometric phase
effects in scattering calculations for a modeJ $¢stem using
B =V xAX)=—-17d(X)e, (16) the vector potential approach. The motivation for using the
) ) ) vector potential approach in their calculations was that double-
wheree; points along the axis perpendicular to thev plane valued boundary conditions are difficult to implement in Jacobi
with the conlcgl intersection located at the origin (see Figure cqordinates. The development of numerical methods for using
1).7794% Equation 16 has the same mathematical form as the the yector potential approach to include geometric phase effects
magnetic field of an infinitely thin and infinitely long magnetic i, scattering and bound-state calculations for a real molecule
solenoid centered at the conical intersection. Of course, the gocyrred in 1996126 This methodology uses symmetrized
vector potential of eq 15 and its associated magnetic field given hyperspherical coordinates and is capable of treating multiple
by eq 16 do not represent a real magnetic field. They come conical intersections located at arbitrary points on the 2D
from the diagonal de_nvatlve coupling term which couples the hypersphere. In the first applications using this method, the
nuclear and electronic motion (see eq 14). o location of a conical intersection on the 2D hypersphere was
The geometric phas@4) can be expressed as the line integral {5ken to be independent of hyper-radial coordingt&26n this
of A alongra closed patl’in .Z/which encircles the degeneracy case, the angle is a function of the two hyperangles, (¢).
subspace/’~ 101925 The method was later generalized so that it could also treat the
B.=fAd 17 depgndence of on p.%5 The veptor potential approach has been
9 ¢ applied to low-energy inelastic scattering offHO(v, j) — H
+ O/, j'),1126:3536t0 quantum reactive scattering of H
Da(v, j) — HD(¢', j') + D3 and D+ Hy(z, j) — HD(¢, j') +
H,38 and to bound state calculations of k% and Na.36:3%|n
this section, we review the numerical difficulties associated with
the vector potential approach and discuss the effects of the
geometric phase on the results of the scattering and bound state
/89 - L/;B'ds (18) calculations mentioned above.

By using Stokes’s theorem, we can express the line integral of
A as a surface integral & which shows that the geometric
phase ) is equal to the “flux” of the “magnetic field” through
the surfaces enclosed byC
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As mentioned above, our theoretical approach is based onmethodology for solving the generalized Ber®@ppenheimer

symmetrized hyperspherical coordinakes (p, 0, ¢).40-43 The equation described above was first applied to the inelastic
radial coordinate corresponds to a symmetric stretch motion, scattering of H+ Ox(v, j) — H + Ox(¢', j') at low collision
the polar anglé represents a bending type motion whére energies and zero total angular momentum (J.es,0).11:26.35.36

72 corresponds to linear geometries ahek O corresponds to  The ground-state electronic potential energy surface for the HO
T-shaped arrangements (equilateral triangles for equal massmolecule contains a conical intersection which occurs for
nuclei), and the azimuthal angle corresponds to an internal  T-shaped C,,) geometries. It also contains two conical intersec-
kinematic rotation (i.e., a pseudorotational motion). The body- tions which occur for linear geometries. As mentioned in section
framez axis is chosen perpendicular to the plane of the triatomic I, these conical intersections occur along a one-dimensional
molecule and the body-frameandy axes are chosen to lie  curve within the three-dimensional nuclear parameter space. The
along the instantaneous principal axes of inertia (i.e.Qlaed shape and topology of this one-dimensional curve can be quite
q vectors of ref 44, respectively). The orientation of the body- complicated. It may consist of several branches and/or loops.
frame relative to the space-frame is given by the three Euler Specialized electronic structure techniques are often required
angles so that the collective set of six coordinates is given by to accurately map out the shape of this one-dimensional
x=(p, 0, ¢, a, B, y). The Schidinger equation for the nuclear  subspac&®5”Fortunately, the minimum energy pathway around
motion is solved in two step¥. In the first step, the radial  each of the linear conical intersections in H&hibits a barrier
variablep is partitioned into a large number of “sectors” and  of about 0.42 eV relative to the asymptotic-HO, potential

the five dimensional surface (angular) differential equation is well.58 Thus, for total scattering energies below 0.42 eV, the
solved withp fixed at the center of each sector. This step iS nuclear motion wave function will not have appreciable
independent of the scattering energy. The surface solutions areamplitude along the entire minimum energy pathway around
used to compute the potential coupling and overlap matrixes the linear conical intersections, and the effects of the geometric
which appear in the coupled-channel (CC) radial equations. In phase associated with these intersections can be ignored.
the second step, the CC radial equations are solved at eachHowever, the minimum energy pathway around@gconical
scattering energy using a log-derivative propagation tech- intersection contains no barrigfThus, the nuclear motion wave
nique®>“® Once we have solved the CC radial equations, we function can have significant amplitude along the entire
apply the boundary conditions to the log-derivative matrix at minimum energy pathway around this intersection even for very

large p to obtain the scattering matri&3"44 This scattering  |ow scattering energies near threshold. To quantify the effects
matrix contains all of the energetically open initial and final of the geometric phase due to tfg, conical intersection, two
diatomic states. sets of calculations were performed. One set included the

The five dimensional surface function solutions are expanded geometric phase by solving the generalized BeBppenheimer
in terms of a hybrid basis set consisting of a discrete variable eq 13. The other set did not include the geometric phase and
representation (DVR}#® in the hyperangl®, a finite basis  solved the standard BofrOppenheimer eq 9. Both sets of

representation (FBR) in the azimuthal angleand the ap-  calculations implemented single-valued boundary conditions on
propriate set of normalized Wignéx(a, j, y) funCtions?’?The the nuclear motion wave function. Significant differences
hybrid basis set accurately tredisth of the Eckart! singu- between the two sets of calculations were observed. The

larities which occur in the kinetic energy operator at the north transition probabilities were computed as a function of total
pole and equator of the 2D hyperspherefing) for all values  energy. Many of the probabilities which include the geometric
of total angular momenturd (see ref 50 for details). This basis  phase were found to be shifted in energy (i.e., “out-of-phase”)
set also allows for an accurate treatment of geometric phasewith respect to those which did not include the geometric
effects and is highly parallelizabfé>? The surface function  phase?® The geometric phase also lowered the averhge0
Hamiltonian is diagonalized in parallel using a parallel imple- cumulative transition probability for the lowest vibrational
mentation of the implicitly restarted lanzcos method (IRLRA}? transition by 3595 Significant differences were also seen in

A careful choice of the numerical quadrature scheme and athe resonance spectrum. The geometric phase altered many of
large set of quadrature points are required in order to obtain the resonance energies and lifetimes. In addition, new resonances
accurate matrix elements of the vector potential terms in €d 13. appeared when the geometric phase was included which were
The singularities in the terms involving? are the most not present in the spectrum calculated without the geometric
troublesome because they involve?. The volume element  phase. Similarly, many of the resonances in the spectrum
cancels one of the™! singularities but the integration of the  calculated without the geometric phase were missing in the
remainingr~* singularity gives rise to a divergent logarithmic  spectrum which included the geometric ph#s®. Gauge
function. Fortunately, the potential energy surfsg) is highly invariance was also tested by performing a third set of
repulsive near a conical intersection so that, for low collision calculations which solved the generalized Be@ppenheimer
energies, the nuclear motion wave function has essentially zeroeq 13 but withl = 2 (see eq 15). Thé = 2 results do not
amplitude near the conical intersection. Thus, the problem with include geometric phase effects and should be identical to the
the singularA? terms can be handled by introducing a cutoff results based on solving the standard Be®ppenheimer eq 9
so that wherA? > Ac, we setA? = Aq. The cutoff allows the  with single-valued boundary conditions (i.e., thes 0 case).

numerical integrals to converge. The cutoff paramétgr is As expected, excellent agreement was observed betweén the
determined from convergence studies and is increased until the= 2 andl = 0 calculations for the resonance spectrum and
solutions become insensitive to'#*>37 For high collision  transition probabilities which indicates that the calculations are

energies, more electronic states must be included and the vectofvell converged and that gauge invariance is satisiéé In
potential approach must be generalized to include the off- summary, the geometric phase significantly alters the results
diagonal matrix elements which couple the different electronic of the calculations on H- O; inelastic scattering fo = 0 and
states (see eq 5). For more details on nonadiabatic methods seg must be included in the theoretical treatment in order to obtain
ref 5. the correct results. However, the effects of the geometric phase
A. Applications in Chemical Reaction Dynamics. The on physical observables such as integral and differential cross
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sections requires calculations fdr> 0. That is, a separate  barriers are relatively small so that significant geometric phase
calculation for each value afand inversion parity? = + are effects can occur even for low-lying vibrational states. The
required up to some maximum valuebf Jmax (WhereJmaxis geometric phase alters the symmetry of the vibrational wave
determined from convergence studies). The contributions from functions, so that for a given fixed value of the hyper-ragius
each value ofl are then added together to obtain fully converged the functions which are even (odd) across the three symmetry
cross sections. To investigate the importance of the geometriclines which bisect the three symmetric potential wells are
phase on fully converged cross sections, the vector potentialsimultaneously odd (even) across the three symmetry lines which
approach was recently extended to include nonzero total angularbisect the saddle points between the wells (see Figures 7 and 8
momentum. Applications of this method to thetHH; reaction in ref 36). Two sets of bound state calculations for; Meere
(and its isotopic variants) will be discussed in Section IV. performed. One set included the geometric phase by solving
B. Applications in Molecular Spectra. The methodology ~ the generalized BorrOppenheimer eq 13 with= 3, and the
for solving the generalized BosrOppenheimer equation de-  Other setignored geometric phase effects and solved the standard
scribed above was also used to investigate the effects of theBOm—Oppenheimer eq 9 using a single-valued basis set. For
geometric phase on the vibrational states of¥aand Na 36.39 each set of calculations, the vibrational states of even and odd
for zero total angular momentum (i.6.= 0). The bound state symmetry (with respect to the symmetry lines whlch_blsect the
calculations use the same computer codes that are used tdVellS) were computed As expected, the geometric phase
compute the surface functions for the scattering calculations. Shifted the vibrational energies for many of the vibrational states
However, the bound state calculations use a renormalizedWhose energy lies near or above that of the barffefhe
Numerov propagaté? and an energy bisection algorithm to geometric phase causes the V|brat|pnal states of_ even (odd)
propagate the coupled-channel radial equations and obtain the®YMmetry to be shifted higher (lower) in energy relative to those

vibrational energies and wave functions (see ref 35 for more Which do not include the geometric phase. These energy shifts
details). TheC,, conical intersection in H@gives rise to a are due to the fact that the even (odd) vibrational states which

geometric phase which alters the symmetry of the nuclear INclude the geometric phase exhibit (do not exhibit) a node
motion wave function causing it to simultaneously exhibit both across the gaddle points, Whe“??‘s thoge_ which do not include
even and odd symmetry (with respect to an interchange of thethe geometric phase do not exhibit (exhibit) a nc_)de. The bound
two identical nuclei ofi60) 11356061 Thys, the correct nuclear state calculations for Navere later extended to include states
motion wave functions exhibit even symmetry across @age of E symmetry and the state assignments for the different

saddle point and odd svmmetry across e symmetry line vibrational modes (i.e., symmetric stretch, asymmetric stretch,
for H—gz geometries )(/see Fi)éure 5 i?erefy 11) 'the odd @nd bendj? The state assignments showed that the energy shifts

symmetry for H-O, correlates to the odd rotational levels of which are due to the geometric p_hase result in a re_orderin_g of
O, (because of Bose statistics only the odd rotational levels of many of the energy levels (relative to th? calculation Wh'_Ch
O, are physically allowedy? Four sets of bound state calcula- ignores geometric phase gffects). In particular, the low-lying
tions for HOQ, were performed. The first set included the states of even §ymmetr&\1) lie above the states.ﬁsymmetry,
geometric phase by solving the generalized Badppenheimer apa?e?%fgv;-lﬁr;?eitaﬁf\eog ?hded Sgénmrgf:i?ﬂd:sgei;oméﬂede d
eq 13, the second set ignored geometric phase effects and solve y y €9 IC phase IS )
the standard BornOppenheimer eq 9 using a single-valued he reverse ordering occurs in calculathns WhICh ignore the
basis set which exhibits even symmetry across@hesaddle geometric phase. For the very lowest vibrational states, the
point, the third set also ignored geometric phase effects but used" €'Y differences between ti#g and E and theA, %”d E

an odd single-valued basis set, and the fourth set tested gaug symmetry states are very small so that the reordering due to

. ; . . . oo The geometric phase is difficult to detect. In summary, the
invariance by solving eq 13 with= 2. For low-lying vibrational - S

o . eometric phase reorders many of the vibrational energy levels
states, the vibrational energies for the even and odd states ar

essentially deaenerate. However. for hiaher-lving states. tun- or Nag and must be included in the theoretical treatment in
1 y deg : Lo 9 ying ' order to obtain the correct results. Calculations of the vibrational
neling across th&,, saddle point gives rise to small energy

differences between the even and odd energy levels. For high-levels for nonzero tqtal angular momentum using a new and
. . o more accurate potential energy surface are currently undeéfway.
lying states, whose energy lies above @3¢ saddle point, large
differences (up t0100 cm) between the even and odd energy
levels occur. However, even the very high-lying vibrational
wave functions remain localized over the deep attractive HO
potential well and do not extend along the entire minimum  Because of its fundamental nature, thetitomic molecule
energy pathway around ti@&, conical intersectiod® Thus, the  is an excellent candidate for accurate theoretical and experi-
results of calculations which include the geometric phase are mental study. In this section, we review some of the past
identical to those which ignore the geometric phase but use atheoretical and experimental studies on the+HH, reaction
single-valued basis set which exhibisen symmetry across  system with an emphasis on those related to geometric phase
the C,, saddle poing> We note that, even though there are no effects. Recent applications of the newly developed vector
geometric phase effects on the vibrational states of,Hiae potential approach to this reaction system are discussed. In
symmetry must be taken into account. The first bound state sections IVa and Vb, we present new guantum reactive
calculations for H@ did not take into account the change in  scattering results using this methodology for the-[M, and H
symmetry and computed the wrong states (i.e., those of odd+ H, reactions, respectively.
symmetry)?® The H; molecule contains a conical intersection which occurs
The ground-state electronic potential energy surface for the between the ground and first excited electronic states for
Naz; molecule contains a conical intersection which occurs for equilateral Ds,) nuclear geometries. The minimum energy of
equilateral triangle @sn) geometries. Because of the 3-fold this intersection is quite high (2.7 eV relative to the bottom of
symmetry of Nag, three identical barriers occur along the the H, well) so that, for low collision energies, the Bofn
minimum energy pathway around the conical intersection. These Oppenheimer approximation is valid and the nuclear dynamics

IV. Geometric Phase Effects in the H+ H,, H + D, and
D + H, Reactions
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can be accurately calculated using a single (ground state)j’ = 4, 5)+ D transitions due entirely to the geometric ph&se.
electronic potential energy surface. However, because of theNo resonance was observed when the geometric phase was
low potential energy barrier (0.42 eV) between the different neglected. In 1997, Wrede and Schniééleattempted to
nuclear arrangements, the nuclear motion wave function canexperimentally verify the predicted resonance by performing
have significant amplitude along the entire minimum energy high-resolution molecular beam experiments in the energy range
pathway around the conical intersection even for relatively low Ei: = 1.461-1.491 eV. Surprisingly, they did not see any
collision energies. Thus, a correct theoretical treatment of the experimental evidence for the theoretically predicted resonance.
H + H, reaction (and its isotopic variants) must include Furthermore, their differential cross section fog; = 1.481
geometric phase effects. eV did not agree with the original experiments of Zare and co-
The first quantum reactive scattering calculations to include Workers? or the theoretical results of Wu and Kuppermé&hn
geometric phase effects were reported in 1990 by Lepetit andWhich include the geometric phase. In fact, their results are in
Kupperman®® for the H+ H, system and zero total angular excellent agreement with theoretical treatments witioot
momentum J = 0). They solved the standard Ber®ppen- include the geometric pha8&7%-8! Previous experiments by
heimer eq 9 and included the geometric phase by implementingSchnieder et & at a slightly lower energf: = 1.471 eV
double-valued boundary conditions on the nuclear motion wave are also in excellent agreement with theoretical calculations
function. These calculations were later extended to include all Which ignore geometric phase effects. The original calculations
J < 34 to obtain the first fully converged scattering results to by Wu and Kuppermann used the LSTH potential energy
include the geometric phase by Wu, Kuppermann, and LeBetit. Surface?® Unpublished calculations by Wu and Kuppermann
For para— para and orthe— ortho transitions, the geometric ~ for the differential cross section summed over all final vibra-
phase was reported to significantly alter the differential cross tional and rotational states Bf; = 1.481 eV using the newer
sections and to a lesser extent, integral cross sections, for totaBKMP2 surfac&* show no geometric phase effects and are in
energies of 1.2 eV and below (where direct (nonreactive) good agreement with the new experimental results of Wrede
processes dominate). Later, these calculations were extende@nd Schniedefe However, there are significant discrepancies
to much higher energies (2.6 eV) in order to investigate the in the state resolved differential cross sections computed by Wu
effects of the geometric phase on the parartho and ortho and Kuppermann using the BKMP2 surface and the experi-
— para transitions (i.e., exchange (reactive) proce$8es). mental results of Wrede and SchniedeFurthermore, the state
Significant geometric phase effects were reported in the resolved differential cross sections computed by Wu and
rotational distributions and integral cross sections for energies Kuppermaniwithoutthe geometric phase using either the LSTH
above 1.8 e\f> or BKMP2 surfaces are significantly different than those
In 1991, Kliner, Adelmann, and Zd%(see also ref 67) ~ computed by several other theoretical grobp®-®* The
performed rotational state distribution measurements for the D theoretical results by Wu and Kuppermann which include the
+ Hj, reaction. Significant differences were observed between 9€ometric phase and use the BKMP2 surface are not consistent
the experimental results and several quantum reactive scatteringVith their original calculations using the LSTH surfaeThis
calculation8 70 for Ho(v = 1,j = 1) and a collision energy of discrepancy has been attributed to subtle dlfferen_ces between
1.0 eV (which corresponds to a total energy of 1.8 eV). The the LSTH and BKMP2 surface8:*> The geometric phase
original theoretical calculations ignored geometric phase effects. 'esonance predicted by Wu and Kuppermann is shifted down
In 1993, Kuppermann and Wu performed fully converged 0 1.442 eV on the BKMP2 surface®®
guantum reactive scattering calculations for the- Bi, reaction Additional experiments were performed at much higher
which included geometric phase effeétsThe persistent dif- energies E: = 2.391 eV) and compared to quasiclassical
ferences between the experimental results and the originaltrajectory calculations (which do not include the geometric
theoretical calculations were reported to be due almost entirely phase) on the LSTH and the double-many-body-expansion
to the geometric phagé.Thus, this experiment is often cited (DMBE) surface$’ Reasonably good agreement between the
as the first experimental measurement of a geometric phasequasiclassical trajectory results and experiment was found for
effect in a chemical reaction. Kuppermann and Wu also reported both of these surfaces. Experiments at an enerdip# 2.86
large geometric phase effects in the differential cross sectionseV (i.e.,abave the minimum energy of the conical intersection)
for a total energy of 1.8 eV but no experimental rotationally have also been performé&These experiments were compared
resolved differential cross sections were available for compari- to quasiclassical trajectory calculations on the BKMP2 surface
son. They also reported significant geometric phase effects in (which omit both the geometric phase and nonadiabatic coup-
the differential cross sections for a total energy of 1.25 eV. ling). Surprisingly good agreement was found between the
However, no geometric phase effects in the integral cross experimental results and quasiclassical trajectory calculations.
sections were reported at this energy. At 0.78 eV, no geometric Recently, more detailed experimental studie€gt= 2.391
phase effects were reported in either the integral or differential eV have been reported and compared to accurate quantum
cross sections. mechanical calculations (which do not include the geometric
Experimental differential cross sections for thetD; (v = phase) on the BKMP2 PES Excellent agreement between the
0,j =0, 1, 2)— HD + D reaction became available in 1993.  experimental and quantum mechanical calculations for several

In 1995, Wu and Kuppermarhpursued calculations for this ~ sState resolved differential cross sections was reported.

system and calculated differential cross sections at a total energy In summary, good agreement has been observed between the
of 1.481 eV both with and without the geometric phase. recentexperimental results of Wrede and Schnieder and several
Significant differences between the two sets of calculations were theoretical treatments whickdo not include the geometric
observed, and the calculations which include the geometric phasephase: the quasiclassical trajectory studieSiat= 2.391 and

were reported to be in much better agreement with the 2.86 eV and especially the quantum mechanical studi&at
experimental result® Additional calculations in the energy = 1.481 and 2.391 eV. This agreement suggests that the effects
rangeEy; = 1.42-1.53 eV showed a pronounced resonance of the geometric phase are not very important for the-HD,

close to 1.481 eV for the H D, (v =) = 0) — HD (¢' = 0, reaction at all of these energies. The absence of geometric phase
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effects was somewhat surprising and motivated additional
theoretical calculations. The vector potential approach was
recently applied to the H- D, reaction3” Surprisingly, these
calculations showed that the geometric phase effects completely
cancel out in all of the state resolved integral and differential
cross sections for all energies when the contributions from even
and odd values of total angular momentud) ére added
together (forJ < 5). The cancellation occurred for both the
LSTH and BKMP2 surfaces and appears to be related to the
alternating symmetry of the Wigné functions with respect

to even and odd. If the cancellation is due to symmetry, then

it should be independent of the potential energy surface and
should also hold for all. This would imply that there are no , .
geometric phase effects in the fully converged integral and -1 0 1
differential cross sections for all energies and would explain ) )
why geometric phase effects have not been seen in any of theﬁlgure 2. Contour plot of the DH potential energy surface with the

. . . -radiusp fi .27ao. This plot i hi jecti
experimentally measured state resolved differential cross sec-o?‘/?heé ;i?;gz; g(fegnaltjSperaﬁalf_slzrf’ecr);_'sTﬂ:tﬁ;ggggggi;:sp{%rencgon

tions for the H+ D> reaction. If the cancellation is due t0 4t the north poleX= 0, y = 0) to /2 at the equator (heavy circle).
symmetry, then it should also occur for all A B, reactions The hyperangle, the azimuthal angle, is measured from the positive
including the D+ H; reaction. This would question the validity X axis and goes ta in the counterclockwise direction and ter in

of the geometric phase results of Kuppermann and Wu for the the clockwise_direction. The contours start at 0.32 eV anq end at 4.0
D + H, reactiod® and also the experimental results of Kliner, eV. The spacing between the dark contours is 0.16 eV with a dashed

contour halfway between. All energies are relative to the bottom of
Adelmann, and Zar€ Kuppermann and W4 have recently a1y potentialywell. The conical intgersection is clearly visible just to
published additional results for the H D, reaction based on  the right of the origin.
both the LSTH and BKMP2 surfaces and have claimed that
the cancellation of geometric phase effects does not hold for
all J. However, their state resolved differential cross sections
withoutthe geometric phase using either the LSTH or BKMP2

surfaces still do not agree with the experimental results of Wrede
and Schniedé? or the results of several other theoretical coordinate system. The conical intersection is located at

groups227%-81 Thus, it appears that there may be errors in the _ ; ~ =
calculations by Kuppermann and Wu which need to be resolvedil'SW and¢ = 0 which corresponds tx( 0.1,y = 0). Its

Figure 2 is a contour plot of the BKMP2 potential energy
surface for DH at p = 3.27ap. The D3, conical intersection is
clearly visible just to the right of the origin. Because we are
usingmass-scaledymmetrized hyperspherical coordinates, the
Dan conical intersection isot located at the origin of our

X : . : ocation in @, ¢) space is independent of the hyper-radius
A possible explanation for these discrepancies was suggested-; -
in 19995 In body-frame symmetrized hyperspherical coordi- igure 2 shows that the minimum energy pathway around the

. ; conical intersection fop = 3.27 a contains a barrier of about
nates, an Eckart singularity occurs at the north péle=(0) 0.55 eV which occurs for{= —1, y = 0), a barrier of about

and thelanother one oceurs at the equaor (77/2) (see ref 5(.) 0.71 eV which occurs forx(= 0.45,y = 0), and two barriers
for details). Our reactive scattering calculations use a.baS|s Selot about 0.51 eV each which occur fot £0.18,y = +0.5).
and mesggtz)dology which accurately treaisth of these singu- 4 neights of these barriers vary with As p is decreased
larities="> However, the methodology which is used by g, 357 5, the barrier atx = —1 decreases toward its
Kuppermann and Wu is not capable of treating both of these yinimym value (0.42 eV), the barriers at= 0.18 disappear,
singularities. Significant errors can occur even for low collision 4.4 the barrier ax = 0.45 increases. A is increased from
energies if the Eckart singularities are not properly treated. A 3.27ay, the barrier ak = —1 increases, the barrier at= 0.45
proper treatment of these singularities requires the introduction gisanpears, and the barriersxat 0.18 decrease toward their
of double-valued functions of the hyperangi@nd the use of  minimum values (0.42 eV) and move to linear geometries (the
Jacobi polynomials in the hyperangde® equator) a ~ 0.63.

A. Quantum Reactive Scattering Calculations for the D Because the nuclei of the two H atoms in Pate spin-1/2
+ H>— HD + H Reaction. In this section, we report the results  fermions®2 the total molecular wave functiot of eq 8) must
of accurate quantum reactive scattering calculations for the D be antisymmetric under a permutatio)(of the two identical
+ Hz (v, j) — HD (¢, j') + H reaction at 48 values of total  nuclei. Because the nuclear spinSs= 1/2, we have a total of
energy in the range 0-4.32 eV. The calculations are based (2S+ 1)2 = 4 nuclear spin states with &+ 1)(S+ 1) = 3
on the same numerical parameters and basis sets that were usasking symmetric and @+ 1)S= 1 being antisymmetric. The
in previous calculations on the H D, reaction®? Reaction symmetric states have the larger statistical weight and are called
probabilities, integral, and differential cross sections are com- ortho-H,. The antisymmetric states are callegta-H,. Because
puted using the BKMP2 potential energy surface for all values the ground electronic state okl alz;r state?® we know that
of total angular momentund = 19. The calculations are  asymptotically (i.e., for large) the electronic wave function
performed both with and without the geometric phase. The for D—H, is symmetric. Because the total wave function must
geometric phase calculations are done using two different be antisymmetric and the electronic wave function is symmetric,
methods. One method uses the vector potential approach whichwe know that forortho (para)-H, the nuclear motion wave
is based on solving the generalized Befppenheimer eq 13 function (W) must be antisymmetric (symmetric) for-DHo.
with single-valued boundary conditions. The second method usesThus, forortho (para)-H; the nuclear motion wave function is
the double-valued basis set approach which is based on solvingantisymmetric (symmetric) across tkexis to the right of the
the standard BornOppenheimer eq 9 with double-valued conical intersection (i.e., fatr > 0.1) in Figure 2. The nuclear
boundary conditions. As expected, these two methods give motion wave functions for large andx > 0.1 correlate to the
identical results. rovibrational states of the Hdiatomic molecule. Foortho
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Figure 3. Difference between the lowest surface function energy which includes the geometric phase (deri&dgdabg that which does not
(denoted byEngp) is plotted as a function of total angular momentdrand inversion parityP for both ortho- and para-H,. The calculations are
at a fixed hyper-radius g = 2.96 a;. The data points are connected by line segments to help guide the eye.

(para)-Hz, only the odd (even) rotational levels of,kHare exp(ln/2) wherel is an odd integer. Ignoring the geometric
compatible with Fermi statistics. The geometric phase alters phase corresponds to setting: 0. This phase factor alters the
the symmetry of the real electronic wave function for Dt symmetry of the nuclear motion wave function acrossthgis

that it is antisymmetric across theaxis to the left of the con-  to the left of the conical intersection (i.e., for< 0.1) in Figure
ical intersection (i.e., fox < 0.1) in Figure 2. This change in 2. ForJ = 0, the part of the nuclear motion wave function
symmetry is a direct consequence of the wave function’s which is in brackets in eq 19 is symmetric fpe= + (the upper
double-valuedness (see eq 11 and ref 60). Thus, in order forsign), or antisymmetric foq = — (the lower sign) for B-H,.%°
the total molecular wave function to satisfy Fermi statistics for ForJ = 1+, the symmetries are reversed. Thus,Je 0" and

all nuclear geometries, fartho (para)-Hy, the nuclear motion para-H,, we must choosg = + in eq 19 so that the overall
wave function must be symmetric (antisymmetric) acrosxthe nyclear motion wave functionI®™P9) is symmetric asymptoti-
axis to the left of the conical intersection (i.e., for< 0.1) in cally (i.e., for D-Hy). When the geometric phase is ignored,

Figure 2. _ the nuclear motion wave functiof?MP9) is symmetric across
Figure 3 plots the difference between the lowest surface the x axis both to the right (i.e., fox > 0.1) and left (i.e., for

function energy computed with and without the geometric phase y < 0.1) of the conical intersection. However, when the
atp = 2.96& as a function of total angular momentuhand  geometric phase is included, the nuclear motion wave function
inversion parityP = +. The surface function energies which s symmetric to the right and antisymmetric to the left of the
include the geometric phase were computed using both thegnical intersection. Fop =

. . = 2.96 ap, the antisymmetry
vector potential approach and the double-valued basis set.,rresponds to a node in the wave function which occurs across

appr(_)ach. As_ expected, both method_s produce essentiallyiha parrier located ak(= —1,y = 0) (see Figure 2). This node
identical low-lying surface function energies. The upper (lower) ghirq the surface function energy higher relative to the purely

two plots are forpara (ortho)-Hz. For all cases, the energy symmetric case which ignores the geometric phase. Thus, the

differences alternate sign with respect to even and hahd . : s :
i , T energy differencégp — Encp iS positive (see Figure 3). Fadr
the magnitude of the energy differences decreases with increas— ;+ andpara-H,, we must still choosg = + in eq 19 so that

It?zgcgd-[Q?hilt:ﬁgf:gt?nSIgsan:ntek'zf %??;%yvsi'ﬁaigsgjoﬁin b€ ihe overall nuclear motion wave functio{MP9) is symmetric
sy y 9 ’ asymptotically (i.e., for B-Hy). For this case, the normalized

For example, fod = 0, 1, and even parityQ = +), the properly . <1 . . . .
symmetrized nuclear motion wave function can be expressedw'gner.D‘?M functions are antisymmetric. Whgn the geometr.|c
in the following way7:5 phgse is _|gnored, the_: part of t_he nL!cIear mo_tlon wave function
which is in brackets in eq 19 is antisymmetric to the right and
et _ 1 2 P left of the conical intersection. However, when the geometric
Wi = T e Y (p,0,¢) £ phase is included, the part of the nuclear motion wave function
2 ) - which is in brackets in eq 19 is antisymmetric to the right and
(=17 "2 4o, 0, —4)] Dgy(et, B, ) (19) symmetric to the left of the conical intersection. The node in
the antisymmetric surface function which ignores the geometric
where the normalized Wign@ﬂ)M functions are symmetric or  phase occurs across the barrier locateckat -1,y = 0) and
antisymmetric under an interchange of the two identical nuclei causes the energies to lie higher relative to the symmetric surface
for even or oddJ, respectively. A proper treatment of the function which includes the geometric phase. Thus, the energy
geometric phase requires the introduction of the phase factordifferenceEgp — Encp iS negative (see Figure 3). Fortho-
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Figure 4. Reaction probabilities for - H, (v = 1,j = 0) — HD (' = 0, ' = 0) + H are plotted as a function of total energy for all values of

J < 19. The solid curves and data points do not include the geometric phase. The short dashed curves and open squares include the geometric phase
and are based on the vector potential approach which accurately treats the location of the conical intersection. The numbers labeling each set of
curves denote the value 8. The curves are shifted to make viewing easier. The flat part of the curves near 0.5 eV corresponds to zero probability

and indicates the value of the shift. The data points are calculated values and the curves are a cubic spline fit.

H,, we must choosg = —, and all of the above symmetry the alternating symmetry of the WignBrfunctions with respect
arguments and energy shifts are reversed (see Figure 3). Thao even and odd. We have recently extended the calculations
alternating sign of the energy differences in Figure 3 also occursto include allJ < 34 and have verified that the “out-of-phase”
for all of the other values g within the interaction region 2.2 behavior continues to hold for all of these higher value3 a$

< p < 3.45a,. well .38
The state-to-state reaction probabilities are given by The differential cross sections for the B H, reaction are
given by
UJ,Z/J ZZ' il vl | (20) do R i
NP ~Shimvim = T ey (21)

dQ'uqu] m kz,j

JP . :
whereN,™ denotes the number of initial orbital angular mo- \yhere the reactive scattering amplitude is given by
mentuml for a givenJ, P, andj. We note that the sums over
A ) . ; . _ 1p=2 o T

angll in quZO :jlre chosen to. be con§|stent W|thPthe _ldermty quw, . =2 fz,mly'j'm(kuj, Ky 09
=]+ | =] +I'. The scattering matrix elemesgjlyy.j.l. is the
appropriately symmetrized scattering matrix element from the and
initial channel ¢jl) to the final channel j'l'). For A + B,
systems, we can chooS§ i = v2 SFyj 0y i (g Ky 09 =

Figure 4 plots the reaction probabnmes forBH;, (v = 1,

j=0)—HD (v =0,j' = 0) + H as a function of total energy Z i C(l9; m, 0,m) C('I'Y; m, m—

for all J < 19. We note that, for zero initial rotational angular (k)"

momentum (i.e.j = 0), the only nonzero reaction probabilities

are for even] + P. The solid curves and data points do not m, m) 2+ 1Y (O 69 T 22)
include the geometric phase. The short dashed curves and open ' rm-mirs il Ty

squares include the geometric phase and are based on the vector

potential approach which accurately treats the location of the where theT matrix is defined asT = | — S andS is the
conical intersection. At high energies, significant “out-of-phase” scattering matrix. The magnitude of the wave ve&igis given
behavior occurs between the results which include the geometricby k,j = a k,j wherea? = 2[mp/(mp + 2 my)] 42, k2 2u(Etot
and those which do not. The “out-of-phase” behavior alternates — ¢,;)/h?, E is the total energye,; are the dlatom|c rovibra-
“phase” with respect to even and odd For example, com-  tional energies of bl andu = [mp My mu/(mp + 2 my)]*2 is
pare the solid and dashed curves Jor= 0—3 near 2.15 eV. the three-body reduced mass. We have chosen the direction of
ForJ = 0, the dashed curve is above the solid curve, and for the initial k,; vector to lie along the space frara@xis so that

= 1, the dashed curve is below the solid curve. Similar behavior M = m.#4 The polar angle®s and ¢s define the direction of
occurs forJ = 2 and 3. More alternating “out-of-phase” behavior the center-of-mass velocity vector of the final HD molecule
can be seen for other energies and valued @specially for relative to the center-of-mass velocity vector of the initial D
Ewt > 1.9 eV andJ = 16). The alternating “out-of-phase” atom. Thus,fs = 180 and O correspond to backward and
behavior in the reaction probabilities appears to be related to forward scattering, respectively. We note that the sums bver
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' the geometric phase effects cancel out in both the integral and
differential cross sections when the contributions from even and
o 0.107 ] odd values of] are added together (see also Figured® of

ref 37). The cancellation of geometric phase effects in both the
integral and differential cross sections with respect to the sum
over J occurs for all of the energies and all of the initial and
final states that we have looked at. The results in Figures 5 and
0.051 1 6 are not fully converged with respect to the sum o¥ér eq

22. However, we have recently extended the calculations to
include allJ < 34 and have verified that the cancellation
continues to hold for fully converged integral and differential
cross section®

Go T o 14 Figures 4-6 and the recent calculatioffsvhich include all

i J < 34 confirm the conclusions of ref 37 which claim that the
Figure 5. Degeneracy averaged rotational distribution is plotted for Cca@ncellation of geometric phase effects in the integral and
D+H;(v=1,j=1)—HD (v =1,j") + H atE, = 1.8 eV summed differential cross sections should continue to hold for higher
over allJ < 19. Two curves are plotted. The solid curve and data points values ofJ. These conclusions are not consistent with the
do not include the geometric phase. The short dashed curve and opemgeometric phase calculations of Kuppermann and Wu which
B s e acssaay e i ocaios o e sonea et arge geomerr phase efect in the fuly converged
%tersection?ql'he geometric phase re);ults lie directly on top of the results integral _and dlfferentlal_ cross_sectlons for theﬂ}b and H.+
which ignore the geometric phase. D, reactions (see the discussion at the beginning of section IV).
However, as noted above, the state resolved differential cross

' ' ' o ~ sections computed by Kuppermann and Wu fo#HD, which

7\ do notinclude the geometric phase are significantly different
than those computed by several other theoretical groups and
the recent high-resolution molecular beam experiments. In
contrast, our state resolved differential cross sections fer H
D, which do notinclude the geometric phase are in excellent
agreement with the results of the other theoretical groups and
the recent high-resolution molecular beam experim&n@ur
double-valued basis set approach for including the geometric
phase uses the same computer codes that were used in the
calculations for H+ D, which do notinclude the geometric
phase?2 The only difference is one line of code which replaces
the basis set exlig) with exp(i(m + 1/2)p). This change is

Integral Cross Section (Az

=)
=y
i

0.01

Differential Cross Section (AZISr)

0 30 60 90 120 150 180

Scattering Angle (Deg) so trivial that it seems unlikely that a mistake could be made.
Figure 6. Degeneracy averaged differential cross sections are plotted Furthe.rmore, our geometnc phase results basef’ on the vector
forD+Hy(v=1,j=1)—HD (/ =1,j) + H at Eex = 1.8 eV potential approach are in excellent agreement with those based

summed over all < 19. The number next to each curve labels the 0n our double-valued basis set approach. Thus, we are confident
value ofj". The solid curves and data points do not include the geometric that all of our geometric phase calculations are correct. Our
phase. The short dashed curves and open squares include the geometrigaometric phase results for the-BH, reaction also question
frgiff f‘h”ed lﬁi‘;ﬁgﬁegfOt?I;hso‘aeig;‘l’riﬁt";fs”et('ft‘i'oipp{%aecg;’!}%ﬁg%ﬂ:&e‘}fhe validity of the experimental results of Kliner, Adelmann,
. & i X .
results are almost identical to the results which ignore the geometric and Zaré which are reported to be in agreement with the
phase. geometric phase calculations of Kuppermann and¥\How-
ever, the rotational distribution for B- H, (v =1,j = 1) —
and!' in eq 22 average out thés dependence so thétis a HD (v = 1,j") + H atEi,: = 1.8 eV was not directly measured
function of 0s only. The degeneracy averaged cross sections experimentally. It was determined by subtracting two other
are given by experimentally measured rotational distributions. This procedure
makes several assumptions and is prone to errors. Furthermore,
_ 1 ﬂ this experiment has not yet been confirmed. Clearly, a high-
T ZZ,. resolution molecular beam experiment for theHH, reaction
vj—'] 2] +1 m dQ : X T .
at 1.8 eV is needed in order to resolve the remaining discrep-

Figures 5 and 6 plot the degeneracy averaged rotational@ncies between theory and experiment.

distribution and differential cross sections foribH; (v = 1, B. Quantum Reactive Scattering Calculations for the H
j=1)—HD (v =1,j') + H at Bt = 1.8 eV summed over  + Hz Reaction.In this section, we report the results of accurate
all values ofJ < 19, respectively. The integral cross sections quantum reactive scattering calculations for therH (v, j)

in Figure 5 are computed by numerically integrating eq 23 over — Hz (v, j') + H reaction at 96 values of total energy in the
the solid angle €. There are two sets of curves in Figures 5 range 0.5-2.42 eV. The calculations are based on the same
and 6. The solid curves and data points do not include the numerical parameters and basis sets that were used in previous
geometric phase. The short dashed curves and open squaresalculations on the H- D, and D+ H, reactions’®>2Reaction
include the geometric phase and are based on the vector potentigbrobabilities, integral, and differential cross sections are com-
approach. In both figures, the results which include the puted using the BKMP2 potential energy surface for all values
geometric phase are essentially identical to those which do notof total angular momentund < 10. The calculations are
include the geometric phase. Figures 5 and 6 show that all of performed both with and without the geometric phase. The

do

d_Q (23)

im—vj'm
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Figure 7. Contour plot of the H potential energy surface with the
hyper-radiusp fixed at 3.27a,. This plot is similar to Figure 2 except

Kendrick
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Figure 8. Reaction probability for H- H, (v =0,j = 1) — H, (¢v' =
1,j' = 2) + H and zero total angular momentuth=€ 0) is plotted as

a function of energy. The solid curve and solid squares do not include

that the contours start at 0.4 eV and the conical intersection occurs atthe geometric phase. The short dashed curve and open squares include

the origin.

geometric phase calculations are done using two different

the geometric phase and are based on the vector potential approach
with | = 3/2. The short dashed curve and open triangles also include
the geometric phase and are based on the vector potential approach

methods. One method uses the vector potential approach whictput are computed with = 9/2. The long dashed curve and Xs also

is based on solving the generalized Bofppenheimer eq 13

with single-valued boundary conditions. The second method uses;

the double-valued basis set approach which is based on solvin
the standard BornOppenheimer eq 9 with double-valued
boundary conditions. As expected, these two methods give
identical results.

Figure 7 is a contour plot of the BKMP2 potential energy
surface for H at p = 3.27 ap. The D3, conical intersection is
clearly visible at the origin of the plat = 0 (i.e.,x =0,y =
0). Its location in @, ¢) space is independent of the hyper-
radius p. Figure 7 shows that the minimum energy pathway
around the conical intersection fpr= 3.27 gy contains three
barriers of about 0.42 eV each which occunat —1,y = 0)
and k ~ 0.5,y = +0.86) and three barriers of about 0.53 eV
each which occur ak(= 0.4,y = 0) and &~ —0.2,y = +0.35).
The heights of these barriers vary wighAs p is increased or
decreased from 3.2&,, the three barriers ak(= —1,y = 0)
and k ~ 0.5,y = +0.86) increase. Ag is increased from 3.27
ap, the three barriers ak(= 0.4,y = 0) and gk ~ —0.2,y =
+0.35) decrease and eventually disappearpAs decreased
from 3.27ay, these three barriers increase.

Because the nuclei in $are spin 1/2 fermion% the total
molecular wave function®, of eq 8) must be antisymmetric
under a permutation) of any two identical nuclei. Because
the nuclear spin i€ = 1/2, we have a total of @+ 1)3 = 8
nuclear spin states. Because of the 3-fold symmetry ptie

include the geometric phase but are based on the double-valued basis
set approach. The shetfong dashed curve and solid triangles do not
include the geometric phase but are computed using the vector potential

gapproach with = 6/2. The data points are calculated values and the

curves are a cubic spline fit.

(i.e., antisymmetric) for HH, so that the total wave function

is antisymmetric. Similarly, for th& nuclear spin states, we
must choose the nuclear motion wave functidif) o be ofE
symmetry for H-H,. The two distinct nuclear spin states of
symmetry combine with each doubly degenerate nuclear motion
wave function ofe symmetry to form two symmetric and two
antisymmetric functions. Only the two antisymmetric functions
are physically allowed. Because the real electronic wave function
for Hz is symmetric for H-H,, we know that it is symmetric
across thex axis forx > 0 (i.e., to the right of the conical
intersection in Figure 7). It is also symmetric across the two
symmetry lines which extend radially outward from the origin
at¢ = £120°. The geometric phase alters the symmetry of the
real electronic wave function for 4o that it is also antisym-
metric across thg axis forx < 0 (i.e., to the left of the conical
intersection in Figure 7). It is also antisymmetric across the two
symmetry lines which extend radially outward from the origin
at ¢ = +£60°. The antisymmetric behavior is a direct conse-
guence of the wave function’s double-valuedness (see eq 11
and refs 36 and 60). To satisfy Fermi statistics for all nuclear
geometries, the product of the nuclear motion wave function

nuclear spin states can be classified using the irreducible and nuclear spin wave function must also be double-valued and

representations of the permutation gragp The irreducible
representations df; are Ay (symmetric),A; (antisymmetric),
and E (doubly degenerate). The number of spin stated\of
Az, andE symmetry are given by @+ 1)(2S+ 3)(S+ 1)/3=
4, (2S5+ 1)(2s— 1)93 =0, and (B + 1)(S+ 1)893 = 4,
respectively?-92 Because theE representation is two-dimen-
sional, there are two distinct spin stateskEbymmetry, and

each one consists of two components which makes a total ofsgz

four. The two components in each spin state are labeletrhy
(thezcomponent of the total nuclear spin). The nuclear motion
wave function ) can also be classified using the irreducible
representations of the permutation gré&gpBecause the ground
state of H is alz;’ state?® we know that asymptotically (i.e.,
for largep) the electronic wave function forHH; is symmetric.
Thus, for theA; (symmetric) nuclear spin states, we must choose
the nuclear motion wave function) to be of A, symmetry

be antisymmetric across the axis for x > 0 and the two
symmetry lines app = +120° and be symmetric across the
axis forx < 0 and the two symmetry lines &t= +60°.

Figure 8 plots the reaction probability for H H, (v = 0,
= 1) — Hy(v = 1, = 2) + H and zero total angular
momentum J = 0) as a function of total energy. The reaction
probabilities are computed using eq 20 wﬂ’;ﬁyu.j.,. =2
Ljl r=20jr- Significant differences occur between the results
which include the geometric phase (the solid curve and squares)
and those which do not (the dashed curve and open squares)
for energies above about 1.9 eV. The dashed curve and open
squares include the geometric phase and are based on the vector
potential approach with = 3/2. The long-dashed curve and
X’s also include the geometric phase but are based on the
double-valued basis set approach. The double-valued basis set
approach uses the same computer codes that were used in the
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occur between the results which include the geometric phase

' (the solid curves and squares) and those which do not (the

0.04 )
dashed curves and open squares) for energies above about 1.9
eV. The most notable differences occur for= 5 at high

0.031 energies. The long-dashed curves and Xs also include the

g’ geometric phase but are based on the double-valued basis set
;‘E‘ approach. As expected, the results based on the double-valued
2 0.021 basis set approach are in good agreement with those based on
& the vector potential approach.

The physically measurable cross sections for the-HH,

0.014 reaction are obtained from wave functions which have been
properly antisymmetrized with respect to an interchange of any
two nuclei (see the above discussion on symmetry). This can

0 be done by the technigue of postantisymmetrization. That is,
the cross sections are computed as if the atoms were distin-
guishable. The distinguishable atom cross sections are then
properly antisymmeterized to obtain the physical cHé3.%

0.06 . i .
The relevant expressions for the physically measurable dif-

005' ferential cross sections are given by

do _ Rv’]’ N igp £ R 2
g " dQ|sm—vjm R_Ujlf sim—imt ~ (TL
2 (24)
& 0.039
2 . . .
e for j andj' even (i.e., para> para)
-
0.02 K

do Vit s R 2

- =—=3|f 25

0.014 dQlim—vim IF i (25)

0 A for j even and’ odd (i.e., para— ortho)

15 2 24
Total Energy (eV) do _ IfLJ |fR | |2 26)
Figure 9. Reaction probabilities for H- Hp (v = 1,j = 0) — Hz (/ dQ|vjm—vjm ki s

= 2,j") + H and zero total angular momentuh= 0) are plotted as
a function of energy. The solid curve and solid squares do not include for | odd andj’ even (i.e., ortho— para), and
the geometric phase. The short dashed curve and open squares include ' '

the geometric phase and are based on the vector potential approach Y K..
with | = 3/2. The long dashed curve and Xs also include the geometric 99 = _LJ[|f N i +
phase but are based on the double-valued basis set approach. ThelQ|sjm—vjmt Ky am=vl

number next to each set of curves labels the valije @he data points (_1)igp fR 24 5¢R 2] 27)
are calculated values, and the curves are a cubic spline fit. uiWu’j'm| | uqu’j'm|

for j andj’ odd (i.e., ortho— ortho), wherefR andfN denote

calculations whictdo notinclude the geometric phase. The only h : d . . litud Vel
difference is one line of code which replaces the basis set exp-t e reactive and nonreactive scattering amplitu eri,lyzve:szpectlve y-

(img) with exp((m + 3/2)p). As expected, the results based on 1€ reactive scattering amplitude is givenfty= f ;" i (k,
the double-valued basis set approach are in good agreement wittf» 0s), andfii . is given by eq 22. Similarly, the non-
those based on the vector potential approach. Gauge invariancéeactive scattering amplitude is given by = f7 170 (k, K,
is also verified by performing the calculations using the vector 0s). The scattering angl@s denotes the direction of the center-
potential approach but with= 9/2 andl = 6/2. Thel = 9/2 of-mass velocity vector of the final Hnolecule relative to the
results are related to those witk= 3/2 by a gauge transforma- ~ center-of-mass velocity vector of the initial H atom. Thas,
tion.”1° The dashed curve and open triangles in Figure 8 are = 180" and O correspond to backward and forward scattering,
the results using = 9/2. As expected, good agreement is respectively. The magnitude of the wave vedtgris given by
observed between the= 9/2 and = 3/2 reaction probabilities.  k,; = a k,j wherea? = 213, kfj = 2 u (Eot — €,))/h?, Eotis the
The small differences are due to numerical convergence errors.total energye,; are the diatomic rovibrational energies of,H
Thel = 6/2 results are related to those witk- 0 by a gauge andu is the three-body reduced mags= mu/+/3. The sign
transformation and correspond to doing the calculations without (—1)'s changes the sign of the interference terms between the
the geometric phase. The shelbng dashed curve and solid reactive and nonreactive contributions to eqs 24 and 27
triangles in Figure 8 are the results using 6/2. As expected,  depending upon whether the geometric phase is incluggd (
good agreement is observed between lthe 6/2 andl = 0 = 1) or not {go = 0). This sign factor is a direct consequence
reaction probabilities. Gauge invariance and the good agreemenbf the double-valuedness of the real electronic wave function
between the double-valued basis set approach and the vectowhich changes sign under a cyclic permutation of the three
potential approach are also observed for other initial and final identical nucled
states and nonzero values bf Figure 10 plots the degeneracy averaged partial integral cross
Figure 9 plots the reaction probabilities forHH; (v = 1, sections forthe H- Hy, (v =0,j = 0)—H, (v' = 1,)’ = 0—3)
j = 0)— Hx(v = 2,j") + H and zero total angular momentum -+ H reaction as a function of total energy. These cross sections
(J = 0) as a function of total energy. Significant differences include allJ < 10 and are computed by numerically integrating
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Figure 10. Degeneracy averaged partial integral cross sections for H
+H(v=0,j=0)—Hx (v =1,j = 0-3) + H summed over all
J < 10 are plotted as a function of energy. The solid curve and solid

24

squares do not include the geometric phase. The short dashed curvi
and open squares include the geometric phase and are based on th

Kendrick

For the para— ortho transitions, there are no significant
differences between the differential cross sections computed with
and without the geometric phase. However, for the paigara
transitions, significant “out-of-phase” behavior occurs between
the differential cross sections computed with and without the
geometric phase. These differences are due to the change in
the sign of the interference terms between the reactive and
nonreactive contributions in eq 24. This can be verified by doing
the calculationsvithoutthe geometric phase but setting= 1

in eq 248 The short-long dashed curve and open triangles are
based on the calculations which ignore the geometric phase but
useig, = 1 in eq 24. We see that the sheftbng dashed curve

and open triangles are essentially identical to the results which
include the geometric phase (the short dashed curve and open
squares).

Figure 12 plots the degeneracy averaged partial differential
cross sections forthe Ht Hy, (v = 0,j = 0)— H, (v = 1,
= 0—1) + H reaction as a function of total energy and include
all J = 10. The results computed both with (denoted by GP)
and without (denoted by NGP) the geometric phase are plotted.
For the para— ortho transitions, there are no significant
differences between the differential cross sections computed with
and without the geometric phase for all energies. However, for
the para— para transitions, significant differences occur between
the differential cross sections computed with and without the
geometric phase. As noted above, these differences are due to
the change in the sign of the interference terms between the
reactive and nonreactive contributions in eq 24 (i.e., they are
due to the sign factor-{1)is).

Figures 16-12 show that all of the geometric phase effects
cancel out inboth the integral and differential cross sections
when the contributions from even and odd valueslaf 10
are added togethexxceptfor the effects due to the sign factor
—1)w. The cancellation occurs for all of the energies and all

vector potential approach. The short dashed curve and open trianglesOf the initial and final states that we have looked at. Since the
are based on the calculations which ignore the geometric phase butonly effect of the geometric phase is the sign facted ),
are computed using the opposite sign for the interference terms betweerthere are no geometric phase effects in the integral and

reactive and nonreactive contributions (see eq 24), for the-pgrara
transitions. The data points are calculated values and the curves are
cubic spline fit.

eq 23 over the solid anglel2l The solid curve and solid squares

differential cross sections for para ortho or ortho— para

Yransitions. Because the cancellation appears to be due to

symmetry, we expect that these conclusions will also be valid
for fully converged integral and differential cross sections.

do not include the geometric phase. The short dashed curveBecause of the sign factor-()s, significant geometric phase
and open squares include the geometric phase and are basegffects occur for para> para or ortho— ortho transitions even

on the vector potential approach. For the parartho transitions

for relatively low energies. These results are consistent with

there are no significant differences between the cross sectionshe predictions of Mea#iMead noted that the geometric phase
computed with and without the geometric phase. However, for Causes the real electronic wave function to change sign under

the para— para transitions, significant differences occur between

a cyclic permutation of the three identical nuclei. This sign

the cross sections computed with and without the geometric change gives rise to the sign changd J between the reactive
phase even for relatively low energies. These differences are@nd nonreactive contributions to the cross sections (see eqs 24

due to the change in the sign of the interference terms betweer@nd 27)? Thus, the effects of the geometric phase will be
the reactive and nonreactive contributions in eq 24. This can Significant whenever the interference between reactive and

be verified by doing the calculationgthoutthe geometric phase
but settingigy = 1 in eq 248 The short-long dashed curve and

nonreactive processes is significant. The change in sign between
the reactive and nonreactive contributions leads to an “out-of-

open triangles are based on the calculations which ignore thePhase” behavior between the results computed with and without

geometric phase but ugg= 1 in eq 24. We see that the shert

the geometric phase. This “out-of-phase” behavior is a function

long dashed curve and open triangles are essentially identicalof both the scattering angle and energy.

to the results which include the geometric phase (the short

dashed curve and open squares).

We note that oud = O results for the H+- H; reaction based
on the BKMP2 potential energy surface are in excellent

Figure 11 plots the degeneracy averaged partial differential agreement with those of Lepetit and Kupperm@&rrased on

cross sections for the H Hy, (v =0, =0)—H, (' = 1,
= 0—3) + H reaction atEy: = 1.8 eV and include all < 10.

the LSTH potential energy surface. Our reactive and nonreactive
probabilities computed both with and without the geometric

The solid curve and solid squares do not include the geometricphase for H+ H, (v =0, =0,m=0)—H + Hy (v = 1, '
phase. The short dashed curve and open squares include the= 0, M = 0) are nearly identical to those plotted in Figure 3 of
geometric phase and are based on the vector potential approachef 32. Also, ourd = 0 partial integral cross sections computed
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Figure 11. Degeneracy averaged partial differential cross sections férH, (v = 0,j) = 0) — H, (v = 1,j' = 0—3) + H summed over all

< 10 atE,s = 1.8 eV. The solid curve and solid squares do not include the geometric phase. The short dashed curve and open squares include the
geometric phase and are based on the vector potential approach. Thelamprdashed curve and open triangles are based on the calculations
which ignore the geometric phase but are computed using the opposite sign for the interference terms between reactive and nonreactive contributions
(see eq 24), for the para para transitions.

both with and without the geometric phase forttH, (v = 0, on a single adiabatic electronic potential energy surface. Two
j=0,m=0)—H+H;(=0,j’=2,m =0)and H+ H; methods were discussed. In one approach, the standard-Born
(¥=0,j=0,m=0—H+H,(v=1,]'=0,m = 0) are Oppenheimer equation for the nuclear motion is solved but with

nearly identical to those plotted in Figure 4 of ref 32. Our results double-valued boundary conditions. In the second approach, a
and conclusions for the H H, reaction are also consistent generalized BorrOppenheimer equation for the nuclear motion
with those of Wu, Kuppermann, and Lep&tior energies below  is solved using single-valued boundary conditions. The general-
1.2 eV. They conclude that there are essentially no geometricized Born-Oppenheimer equation for the nuclear motion
phase effects in the fully converged integral and differential contains a vector potential which has the same mathematical
cross sections for para- ortho and ortho— para transitions  properties as that of a magnetic solenoid centered at the conical
for energies below 1.2 eV. For pata para and orthe~ ortho intersection. Either approach is valid and will give the same
transitions, they find “out-of-phase” behavior between the results for the physical observables. In different situations, one
differential cross sections which are computed with and without approach may be more convenient to implement than the other.
the geometric phase. The “out-of-phase” behavior is attributed \yg giscussed the recently developed numerical methodology
to the sign change-{1)'» between the reactive and nonreactive ¢, solving the generalized BorrOppenheimer equation for

contributions to the cross sections. However, our results andy,e ,clear motion. This methodology is based on symmetrized
conclusions for the H- H reaction are not consistent with the hyperspherical coordinates and can be used for both quantum
results of Wu and Kuppermafinfor energies above 1.8 eVv. reactive scattering and bound-state calculations. Several ap-

Wtu tgnd IK;Jp;pedr.mtalrgﬁtpredlctdla}r%e ef;‘ects n tht‘.a profduct plications using this methodology were discussed. In particular,
rotational state distributions and integral cross sections for paray, . low-energy inelastic scattering of H Oy, the quantum

— ortho and ortho— para transitions for energies above 1.8 reactive scattering of H- Dy, D + Hp, and H+ Hy, and the

rapeneies heh e e e o UTAINSI SpECa of HO and N were discussed. The
of Kliﬁer Adelmann. and Zafé and several theofetical geometric phase alters the symmetry of the nuclear motion wave

calculation&-70 for the D + H, reaction (see section IV A). function causing it to simultaneously exhibit both even and odd

As noted previously at the end of section IV, the discrepancies symmetry under an interchange of any two identical nuclei. This

between our results and those of Kuppermann and Wu might.Change In symmetry gives rise to an "out-of-phase” behavior

be related to the Eckart singularitig'sThe methodology which in the transition probabilities for H+ O, and the reaction

is used by Kuppermann and Wu is not capable of treating both Iofr ott_:)abllltles dfor H+ .DZ arfu:hDJr Ha. It also a::f:) mar(njylof :jhe
Eckart singularities. An accurate treatment lodth Eckart I"Teimes and energies of the resonances | 2 and leads

singularities is crucial in order to obtain accurate scattering to a reordering of many of the vibrational energy levels in.Na

: . . Also, the symmetry change must be accounted for in order to
results especially at the higher energies above 1.8%V. . .
P y g g compute the correct vibrational levels for HOn the H+ D,

reaction, the effects of the geometric phase completely cancel
out in the partial integral and differential cross sectionalht

We reviewed the fundamental theory for including the energies when the contributions from even and odd valuds of
geometric phase in scattering and bound-state calculations based 5 are added together. This cancellation appears to be related

V. Conclusions
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Figure 12. Degeneracy averaged partial differential cross sections férth (v = 0,j = 0)— H, (¢ = 1,j' = 0, 1) + H summed over all <
10 are plotted as a function of total energy. The figures on the left do not include the geometric phase and are denoted by NGP for no geometric
phase. The figures on the right include the geometric phase and are denoted by GP for geometric phase.

to the alternating symmetry of the Wignér functions with < 10 are added together. However, for pargpara and ortho

respect to even and odl — ortho transitions, significant geometric phase effects appear
We presented some new results from accurate quantumin the partial integral and differential cross sections summed

reactive scattering calculations for the B H, and H+ H; over allJ < 10 even for relatively low energies. These large

reactions. The calculations were done both with and without geometric phase effects are due to the change in sign of the
the geometric phase. The calculations which include the interference terms between the reactive and nonreactive con-
geometric phase were done using both the double-valued basidributions to the cross sections. This sign change is a direct
set approach and the vector potential approach. As expectedconsequence of the double-valuedness of the real adiabatic
these two methods produced nearly identical results. The electronic wave function which changes sign under a cyclic
difference between the lowest surface function energy fos DH permutation of the three identical nuclei ins.H

computed with and without the geometric phase alternates sign All of our quantum reactive scattering calculations to date
with respect to even and odd The geometric phase also gives for the H; system indicate that the effects of the geometric phase
rise to an “out-of-phase” behavior in the reaction probabilities completely cancel out in both the integral and differential cross
for D + H,. This “out-of-phase” behavior alternates “phase” sections agtll energies when the contributions from even and
with respect to even and oddThe alternating sign and “phase” odd values of] are added together. Because the cancellation
behavior is related to the alternating symmetry of the Wigner appears to be due to symmetry, we expect that it may also hold
D functions with respect to even and oddThe effects of the  for other chemical reactions. Calculations for thetHO, —
geometric phase in the B H, reaction completely cancel out OH + O reaction are underwa&j.The only exception appears

in the partial integral and differential cross sectionsaét to be the para~ para and orthe~ ortho transitions in the H-
energies when the contributions from even and odd valuds of H; reaction. The effects of the geometric phase at low energies
< 19 are added together. Recent calculations have verified thatfor the para— para and orthe— ortho transitions were first

this cancellation continues to hold for dlix 34 and that there  predicted by Meatin 1980. He showed that the geometric phase
are no significant geometric phase effects in the fully converged changes the sign of the interference terms between the reactive
integral and differential cross sectiotfsSignificant geometric and nonreactive contributions to the cross sections. Thus,
phase effects are also seen in the reaction probabilities for H  significant geometric phase effects can occur whenever the
H, at high energies. For para> ortho and ortho— para interference between reactive and nonreactive processes is
transitions, the effects of the geometric phase completely cancelimportant. Mead claimed that, for low energies, the effects of
out in the partial integral and differential cross sectionalht the geometric phase can be treated by doing the calculations
energies when the contributions from even and odd valuds of without the geometric phase but computing the cross sections
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with the opposite sign on the interference terms. However, for & effectively “punches a hole” in//so that the effective nuclear parameter

high energies, an accurate calculation based on the double
valued basis set approach or the vector potential approach i
required. Our results indicate that Mead’s procedure is probably

form A = (—1/12)vn(x) (I odd integer) isnot a pure gauge and therefore
Sgives rise to a geometric phase which can lead to physical effects.

space.”/ — & is not simply connected. Thus, a vector potential of the

(22) The full 2 range fory is determined from the signs of théx)

accurate even for high energies. All other geometric phase andu(x) functions which appear in the tahfunction.

effects in the cross sections appear to cancel out when summed

overJ.

We conclude that the effects of the geometric phase can be
important for chemical reactions which contain three or more
identical nuclei. For these reactions, the geometric phase can

(23) Yarkony, D. RJ. Phys. Cheml1996 100, 18612.

(24) Yarkony, D. RRe. Mod. Phys1996 68, 985.

(25) Yarkony, D. RJ. Chem. Phys1999 110, 701.

(26) Kendrick, B.; Pack, R. TJ. Chem. Phys1996 104, 7502.

(27) Simon, B.Phys. Re. Lett. 1983 51, 2167.

(28) Bohm, A.; Boya, L. J.; Kendrick, B?hys. Re. A1991, 43, 1206.
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significantly alter the integral and differential cross sections 2528.

whenever the interference between reactive and nonreactive  (30)
processes is important. Furthermore, it appears that the effects”

Schutz, B.Geometrical Methods of Mathematical Physics
ambridge University Press: New York, 1988.
(31) Nash, C.; Sen, S.opology and Geometry for Physiciséeademic

of the geometric phase for these reactions can be taken intOpress: San Diego, CA, 1983.

account by simply applying Mead'’s procedure. However, more
work is needed in order to investigate the importance of the
geometric phase in chemical reaction dynamics when more than

one conical intersection is present (such as in the @, —
OH + O reaction). More work is also needed in order to fully

resolve the remaining discrepancies between the different

theoretical results and experimental data for thé H, reaction
system. Because of its fundamental nature, the H, reaction

is an excellent candidate for both theoretical and experimental

studies. The differential cross sections for the parpara and
ortho— ortho transitions in the H- H, reaction are probably

the best candidates for an experimental confirmation of geo-

metric phase effects in a chemical reaction.
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