
FEATURE ARTICLE

Geometric Phase Effects in Chemical Reaction Dynamics and Molecular Spectra

Brian K. Kendrick
Theoretical DiVision (T-12, MS-B268), Los Alamos National Laboratory, Los Alamos, New Mexico 87545

ReceiVed: August 12, 2002; In Final Form: June 18, 2003

The theoretical methodology for including the effects of the geometric phase in quantum reactive scattering
and bound-state calculations is reviewed. Two approaches are discussed: one approach is based on solving
the standard Born-Oppenheimer equation but with double-valued boundary conditions, and the second approach
is based on solving a generalized Born-Oppenheimer equation with single-valued boundary conditions. The
generalized Born-Oppenheimer equation contains a vector potential which is mathematically equivalent to
that of a magnetic solenoid. The recently developed numerical methodology for solving the generalized Born-
Oppenheimer equation is reviewed, and several applications of this methodology in chemical reaction dynamics
and molecular spectra are discussed. New results from accurate six dimensional quantum reactive scattering
calculations for the D+ H2(V, j) f HD(V′, j′) + H and H+ H2(V, j) f H2(V′, j′) + H reactions are presented.
These calculations are performed both with and without the geometric phase. The geometric phase calculations
are done using both the double-valued basis set approach and vector potential approach. The effects of the
geometric phase in the reaction probabilities, integral, and differential cross sections are investigated as a
function of scattering energy and total angular momentumJ.

I. Introduction

The standard theoretical treatment of chemical reaction
dynamics and molecular vibrations is based on the separation
of the total molecular motion into fast and slow parts. The fast
motion corresponds to the motion of the electrons, and the slow
motion corresponds to the motion of the nuclei. The theoretical
foundation for the separation of the electronic and nuclear
motion was first developed by Born and Oppenheimer.1 In this
approach, the total molecular wave function is expanded in terms
of a set of electronic eigenfunctions which depend parametrically
on the nuclear coordinates. The expansion coefficients are the
nuclear motion wave functions which satisfy a matrix Schro¨-
dinger equation which includes off-diagonal coupling matrix
elements with respect to the electronic quantum numbers. The
smallness of the electronic mass (me) relative to the nuclear mass
(mN) is used to obtain an asymptotic expansion of the total
molecular wave function, energy, and other quantities of interest
in terms of the small parameterκ ) (me/mN)1/4.2-4 To lowest
order inκ, the off-diagonal coupling terms can often be ignored
for low-energy collisions, small amplitude molecular vibrations,

and nondegenerate electronic states. In this case, the total
molecular wave function can be expressed in terms of a single
electronic state (usually the ground state). Thus, to a good
approximation, the nuclear motion is governed by an effective
Schödinger equation whose potential energy surface is deter-
mined by solving the Scho¨dinger equation for the ground
electronic state at each nuclear geometry. This one-state
approximation is often referred to as the “Born-Oppen-
heimer approximation” and has been the foundation for the
modern theory of electronically adiabatic processes. For high-
energy collisions or degenerate electronic states, the Born-
Oppenheimer approximation can break down, and more than
one electronic state must often be included. For example, high-
energy collisions give rise to electronically nonadiabatic pro-
cesses (i.e., collision processes which change the electronic
quantum numbers).5 Another situation for which the standard
Born-Oppenheimer method becomes inadequate is when a
conical intersection occurs between the ground and an excited
electronic state. Conical intersections can alter the nuclear
dynamics even for low-energy collisions or vibrational motion
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for which the one-state approximation is valid. In this article,
we consider the modifications to the standard Born-Oppen-
heimer method which are required in order to account for the
effects of conical intersections on the nuclear dynamics for low-
energy collisions and vibrational motion on a ground-state
electronic potential energy surface.

In 1963, Herzberg and Longuet-Higgins6 showed that a real
adiabatic electronic wave function changes sign (i.e., it is a
double-valued function) when the nuclear coordinates traverse
a closed path which encircles a conical intersection. In order
for the total molecular wave function to remain single-valued,
a compensating sign change must also occur in the nuclear
motion wave function. Furthermore, for molecules with two or
more identical nuclei, the sign change must be accounted for
in order for the total molecular wave function to satisfy the
correct Bose-Fermi statistics under an interchange of any two
identical nuclei. In 1979, Mead and Truhlar7,8 discussed two
approaches for including the sign change in the nuclear motion
wave function. In one approach, a real double-valued electronic
wave function is used and the correct nuclear motion wave
functions are obtained by solving the standard Scho¨dinger
equation for the nuclear motion but with double-valued boundary
conditions. In the second approach, acomplexsingle-valued
electronic wave function is used, and the correct nuclear motion
wave functions are obtained by solving a generalized Scho¨dinger
equation for the nuclear motion with single-valued boundary
conditions. The complex single-valued electronic wave function
is obtained by multiplying the real double-valued electronic
wave function by a complex phase factor which is a function
of the nuclear coordinates. This phase factor changes sign for
any closed path which encircles a conical intersection so that
the complex electronic wave function is single-valued. The
electronic Scho¨dinger equation is unchanged by the phase
transformation so that the complex single-valued electronic wave
function satisfies the same eigenvalue equation as the real
double-valued electronic wave function. However, the Scho¨d-
inger equation for the nuclear motion acquires a vector potential
(i.e., the momentum operatorp f p - A). This vector potential
comes from the gradient operator with respect to the nuclear
coordinates acting on the complex phase factor. The vector
potential is nontrivial (i.e., it cannot be transformed or gauged
away by using a single-valued phase transformation) and is
mathematically equivalent to that of a “magnetic solenoid”
centered at the conical intersection. The resulting Scho¨dinger
equation for the nuclear motion is identical to that of a charged
particle moving in the presence of a magnetic solenoid. If the
nuclear motion wave function has significant amplitude along
the entire minimum energy pathway encircling a conical
intersection, significant interference effects will occur which
can significantly alter the nuclear dynamics. These effects can
occur for relatively small collision and vibrational energies
which are much smaller than the energy of the conical
intersection. The collision or vibrational energy only needs to
be larger than all of the potential energy barriers which may
occur along the minimum energy pathway encircling the conical
intersection. Mead later called this effect the “molecular
Aharonov-Bohm effect”.9 In 1984, Berry10 considered a general
quantum system with parametric time dependence undergoing
a cyclic adiabatic time evolution. He showed that the sign
change which occurs in the “molecular Aharonov-Bohm effect”
is a special case of the more general geometric phase often
referred to as “Berry’s phase”. Berry’s influential paper gener-
ated much theoretical and experimental interest in this effect
which continues to this day.

Section 2 presents the generalized Born-Oppenheimer equa-
tion for the nuclear motion which takes into account the
geometric phase effects due to a conical intersection. Section 3
reviews the recently developed numerical methods for solving
the generalized Born-Oppenheimer equation. Several applica-
tions using this methodology are also discussed. Section 4
presents new results from accurate full dimensional quantum
reactive scattering calculations for two fundamental chemical
reactions: H+ H2 f H2 + H and D + H2 f HD + H. A
conical intersection occurs in the H3 molecule when all three
of the internuclear distances are equal (i.e.,D3h geometries).
The effects of the geometric phase are investigated by solving
both the standard and generalized Born-Oppenheimer equations
for the nuclear motion and comparing the results. The reaction
probabilities, integral, and differential cross sections for each
of these reactions are presented as a function of total energy
and total angular momentum (J). Section 5 presents some
conclusions regarding the importance of geometric phase effects
in chemical reaction dynamics and molecular vibrational spectra.

II. Generalized Born-Oppenheimer Method

The molecular Scho¨dinger equation is given by

whereΨtot is the total molecular wave function,H is the total
molecular Hamiltonian, andE is the total energy. We restrict
our present treatment to triatomic molecules so that there are
six nuclear coordinates relative to the center of mass. Three of
these six are internal coordinates which are functions of the
three internuclear distances. The remaining three are angular
coordinates which specify the orientation of the body-frame
relative to the space-frame and are usually taken to be the three
Euler angles. The six nuclear coordinates are denoted asx )
(x, x̂) wherex andx̂ denote the three internal and three angular
coordinates, respectively.

After separating out the center of mass motion, we can
expressH in space-frame coordinates as

where32 is the six-dimensional Laplacian with respect to the
six nuclear coordinatesx, µ is the three body reduced massµ
≡ (mA mB mC/(mA + mB + mC))1/2, andh(x) is the electronic
Hamiltonian which depends parametrically on the three internal
nuclear coordinates.

We neglect all electronic angular momentum (spin and
orbital) so that the space-frame electronic eigenfunctions (æn)
depend parametrically on the three internal nuclear coordinates
x and can be chosen real orthogonal with real eigenvalues (Vn)11

where r denotes all of the electronic coordinates. From now
on, we assume that accurate solutions to eq 3 are available or
can be readily calculated.

The total molecular wave function can be expanded in terms
of the electronic eigenfunctions

where the expansion coefficientsΨn(x) are the nuclear motion
wave functions, andψN is the nuclear spin wave function. The

H Ψtot ) E Ψtot (1)

H ≡ - p2

2µ
32 + h(x) (2)

h(x) æn(r ; x) ) Vn(x) æn(r ; x) (3)

Ψtot ) ∑
n)0

N

Ψn(x) æn(r ; x) ψN (4)
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number of electronic statesN is in general infinite. Fortunately,
the smallness of the Born-Oppenheimer parameterκ allows
one to truncate this infinite sum to some finite numberN. If
one substitutes eq 4 into eq 1, multiplies on the left byæn(r ;
x), integrates overr , and uses eq 3, one obtains the following
matrix equation for the nuclear motion wave function to lowest
order inκ (n ) 0, 1, 2, ...,N)12-14

where the vector nonadiabatic coupling matrix elements are
given by

The effective scalar potential is given by12-14

The scalar potential given in eq 7 contains mass dependent
contributions which involve derivative coupling matrix elements
between the electronic subspace of interest and the excited
electronic states. For low collision energies or small amplitude
vibrational motion, these contributions have the effect of a small
correction (proportional toκ4) to the potential energyVn(x).
From now on, we ignore these small corrections and take
εnm(x) ) Vn(x) δnm. However, near a conical intersection (i.e.,
for high collision energies which approach the energy of the
conical intersection), these contributions are not necessarily
small. For diatomic molecules, they have been evaluated using
specialized,15,16 and more conventional,17 electronic structure
techniques and also have been measured experimentally.18

In many applications, we can truncate the sum in eq 4 to
only one term. This case is often referred to as the “Born-
Oppenheimer approximation”, and the molecular wave function
is given by

where n ) 0 denotes the ground electronic state. For high
collision energies or degenerate electronic states, more terms
in the sum overn must often be included. From now on, we
assume that eq 8 is valid and drop the subscript on the nuclear
and electronic wave functions with the understanding that they
denote the ground electronic state. The Born-Oppenheimer eq
5 for the nuclear motion becomes

In the derivation of eq 9, we used the fact that〈æ(x)|3|æ(x)〉 )
0 which is straightforward to prove by differentiating the
normalization equation〈æ(x)|æ(x)〉 ) 1 and using the fact that
|æ(x)〉 is real.

We denote thed-dimensional internal nuclear parameter space
by M (d ) 3 for triatomics) and the subspace ofM for which
a conical intersection occurs byD ⊂ M. The subspaceD is of
dimensiond - 2, and for triatomic molecules it is a one-
dimensional curve in the three-dimensional nuclear parameter

spaceM.6,19 Two conditionsu(x) ) 0 andV(x) ) 0 define the
subspaceD, and these can be expressed in terms of any two
diagonal cofactors of the matrixw(x) ≡ h(x) - I V0(x) where
h is the electronic Hamiltonian andV0 is the ground-state
eigenvalue.20 In an infinitesimal region nearD, the relevant
part of the electronic Hamiltonian is a 2× 2 matrix of the
form7,19

whereδu(x) andδV(x) are infinitesimal displacements from the
origin in the two-dimensional Cartesian space spanned byu eu

andV ev (see Figure 1). The polar coordinates are denoted by
(r, η) wherer is the radial distance from the origin inuV space
and η is the azimuthal angle around the origin. The two
eigenvalues of eq 3 areV((x) ) (r which correspond to the
upper and lower cones in Figure 1. The two corresponding
eigenvectors are given by

It is clear that, because of the half-angle functional dependence
upon the azimuthal angleη, these eigenvectors change sign (i.e.,
are double-valued) for any closed path in the nuclear parameter
space for whichη changes by 2π. Equation 11 is valid only in
the infinitesimal region near the conical intersection. However,
the sign change (double-valuedness) existsglobally. That is,
any closed path inM which encirclesD (no matter how far
away fromD) results in a sign change in the adiabatic ground-
state real electronic eigenvector.21 The global expression for
the angleη is given by η(x) ≡ tan-1(V(x)/u(x)) which is in
general a complicated function of the three internal nuclear
coordinates.22 Recently, techniques have been developed to
computeη(x) for a general polyatomic molecule.20,23-25 How-
ever, for triatomic molecules (such as H3, HO2, and Na3), a
suitable functional form forη(x) can often be derived analyti-
cally.7,11 It is important to realize that the functional forms of
u(x) and V(x) are not unique. Hence,η(x) is not unique. The

∑
m)0

N [p2

2µ
∑
k)0

N

(-i δnk3 - Ank(x))‚(-i δkm3 -

Akm(x)) + εnm(x)] Ψm(x) ) E Ψn(x) (5)

Anm(x) ) i 〈æn(x)|(3|æm(x)〉) (6)

εnm(x) ) Vn(x) δnm -

p2

2µ
∑

l*n,m

〈æn(x)|(3|æl(x)〉)‚〈æl(x)|(3|æm(x)〉) (7)

Ψtot ≈ Ψ0(x) æ0(r ; x) ψN (8)

[- p2

2µ
32 + V(x)] Ψ(x) ) E Ψ(x) (9)

Figure 1. Perspective plot of a two-dimensional slice of a potential
energy surface near a conical intersection. The degeneracy point is
located at the origin in theuV plane. The radial distance from the
intersection is denoted byr and the azimuthal angle around the
intersection denoted byη. The adiabatic ground-state real electronic
wave function changes sign for any closed path inuV space which
encircles the origin (such as the dashed curveC).

h(x) ) -(δu δV
δV -δu) ) -r (cosη sin η

sin η - cosη ) (10)

æ+ ) (- sin
η
2

cos
η
2

), æ- ) [cos
η
2

sin
η
2

] (11)
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only requirement is thatη(x) change by 2π for anyclosed path
in M which encirclesD. This freedom in choosingη is called
“gauge freedom” and different choices forη are related byU(1)
gauge transformations.7,11,19,20,26

Following Mead and Truhlar,7 we multiply the real adiabatic
electronic wave function by a complex phase

where l is an odd integerand η(x) is the azimuthal angle
discussed above which changes by 2π for any nuclear motion
which encircles a conical intersection. The complex phase factor
cancels the sign change from the real electronic wave function
æ(r ; x) giving rise to a complexsingle-Valuedelectronic wave
functionæC(r ; x). It is straightforward to show that the different
choices forl are related by gauge transformations.7 Hence, the
choice ofl is a matter of convenience although larger values of
l cause the numerical calculations to converge more slowly.11,26

Using eq 12 and repeating the same steps which lead to eq
9, we obtain the generalized Born-Oppenheimer equation for
the nuclear motion7,11-14,19

where the nuclear motion wave functionΨC(x) is single-Valued
andA(x) is the vector potential defined as

Substituting eq 12 into eq 14, we can write the vector potential
as

Equation 15 has the same mathematical form as the vector
potential of a magnetic solenoid located at the conical
intersection.7-9,19 By taking the curl of eq 15, we find that the
corresponding “magnetic field” is zero everywhere except at
the conical intersection where it has a delta function singularity

whereez points along thez axis perpendicular to theuV plane
with the conical intersection located at the origin (see Figure
1).7-9,19 Equation 16 has the same mathematical form as the
magnetic field of an infinitely thin and infinitely long magnetic
solenoid centered at the conical intersection. Of course, the
vector potential of eq 15 and its associated magnetic field given
by eq 16 do not represent a real magnetic field. They come
from the diagonal derivative coupling term which couples the
nuclear and electronic motion (see eq 14).

The geometric phase (âg) can be expressed as the line integral
of A along a closed pathC in M which encircles the degeneracy
subspaceD7-10,19,25

By using Stokes’s theorem, we can express the line integral of
A as a surface integral ofB which shows that the geometric
phase (âg) is equal to the “flux” of the “magnetic field” through
the surfaceS enclosed byC

Upon substituting eq 15 into eq 17 or eq 16 into eq 18, we
find that âg ) -lπ which corresponds to a phase factor of
exp(-ilπ) ) -1. Thus, the sign change associated with a conical
intersection can be given a geometrical interpretation. Equations
17 and 18 can be generalized to higher dimensions using the
language of differential geometry. Equation 17 can be expressed
as the line integral of a connection 1-form along the closed path
C and the phase factor exp(iâg) the associated holonomy.
Similarly, eq 18 can be expressed as the surface integral of a
curvature 2-form over the surfaceS enclosed byC.10,19,27-31

III. Numerical Methodology for Solving the Generalized
Born-Oppenheimer Equation

Although the generalized Born-Oppenheimer eq 13 was first
derived in 1979, numerical techniques for solving this equation
were developed only recently. Part of this delay is due to the
singular nature of the vector potential which exhibits ar-1

singularity wherer denotes the radial distance from the conical
intersection. Thus, until recently, geometric phase effects were
included in scattering and bound-state calculations by solving
the standard Scho¨dinger eq 9 but with double-valued boundary
conditions. For example, the H3 molecule contains a conical
intersection which occurs for equilateral triangle (D3h) geom-
etries. If one uses symmetrized hyperspherical coordinates, then
double-valued boundary conditions are relatively straightforward
to implement for this molecule by choosing the angleη (see
Figure 1) equal to the azimuthal angleφ of the 2D hypersphere.
Thus, geometric phase effects can be included in the calculations
by solving the standard Born-Oppenheimer eq 9 but expanding
the solutions in terms of a double-valued basis set such as
exp[i(m + 1/2)φ] (wherem is an integer). This is the approach
used by Kuppermann and co-workers.32,33 However, for other
coordinate systems, for more complicated molecules, or when
the conical intersection is not located at the symmetry point of
the hyperspherical coordinates, the double-valued boundary
conditions can be difficult to implement. For these more
complicated cases, the vector potential approach which is based
on solving the generalized Born-Oppenheimer eq 13 with
single-valued boundary conditions is often more convenient. In
1994, Wu, Wyatt, and D’Mello34 included geometric phase
effects in scattering calculations for a model X3 system using
the vector potential approach. The motivation for using the
vector potential approach in their calculations was that double-
valued boundary conditions are difficult to implement in Jacobi
coordinates. The development of numerical methods for using
the vector potential approach to include geometric phase effects
in scattering and bound-state calculations for a real molecule
occurred in 1996.11,26 This methodology uses symmetrized
hyperspherical coordinates and is capable of treating multiple
conical intersections located at arbitrary points on the 2D
hypersphere. In the first applications using this method, the
location of a conical intersection on the 2D hypersphere was
taken to be independent of hyper-radial coordinateF.11,26In this
case, the angleη is a function of the two hyperangles (θ, φ).
The method was later generalized so that it could also treat the
dependence ofη onF.35 The vector potential approach has been
applied to low-energy inelastic scattering of H+ O2(V, j) f H
+ O2(V′, j′),11,26,35,36to quantum reactive scattering of H+
D2(V, j) f HD(V′, j′) + D37 and D+ H2(V, j) f HD(V′, j′) +
H,38 and to bound state calculations of HO2

35 and Na3.36,39 In
this section, we review the numerical difficulties associated with
the vector potential approach and discuss the effects of the
geometric phase on the results of the scattering and bound state
calculations mentioned above.

æC(r ; x) ≡ exp(i l2η(x)) æ(r ; x) (12)

[p2

2µ
(-i 3 - A(x))2 + V(x)] ΨC(x) ) E ΨC(x) (13)

A(x) ≡ i〈æC(x)|(3|æC(x)〉) (14)

A(x) ) - l
2

3 η(x) (15)

B(x) ≡ 3 × A(x) ) -l π δ(x) ez (16)

âg ) ICA‚dl (17)

âg ) ∫S
B‚ds (18)
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As mentioned above, our theoretical approach is based on
symmetrized hyperspherical coordinatesx ) (F, θ, φ).40-43 The
radial coordinateF corresponds to a symmetric stretch motion,
the polar angleθ represents a bending type motion whereθ )
π/2 corresponds to linear geometries andθ ) 0 corresponds to
T-shaped arrangements (equilateral triangles for equal mass
nuclei), and the azimuthal angleφ corresponds to an internal
kinematic rotation (i.e., a pseudorotational motion). The body-
framezaxis is chosen perpendicular to the plane of the triatomic
molecule and the body-framex and y axes are chosen to lie
along the instantaneous principal axes of inertia (i.e., theQ and
q vectors of ref 44, respectively). The orientation of the body-
frame relative to the space-frame is given by the three Euler
angles so that the collective set of six coordinates is given by
x ) (F, θ, φ, R, â, γ). The Scho¨dinger equation for the nuclear
motion is solved in two steps.44 In the first step, the radial
variableF is partitioned into a large number of “sectors” and
the five dimensional surface (angular) differential equation is
solved withF fixed at the center of each sector. This step is
independent of the scattering energy. The surface solutions are
used to compute the potential coupling and overlap matrixes
which appear in the coupled-channel (CC) radial equations. In
the second step, the CC radial equations are solved at each
scattering energy using a log-derivative propagation tech-
nique.45,46 Once we have solved the CC radial equations, we
apply the boundary conditions to the log-derivative matrix at
large F to obtain the scattering matrixS.37,44 This scattering
matrix contains all of the energetically open initial and final
diatomic states.

The five dimensional surface function solutions are expanded
in terms of a hybrid basis set consisting of a discrete variable
representation (DVR)47-49 in the hyperangleθ, a finite basis
representation (FBR) in the azimuthal angleφ, and the ap-
propriate set of normalized WignerD̃(R, â, γ) functions.50 The
hybrid basis set accurately treatsboth of the Eckart51 singu-
larities which occur in the kinetic energy operator at the north
pole and equator of the 2D hypersphere in (θ, φ) for all values
of total angular momentumJ (see ref 50 for details). This basis
set also allows for an accurate treatment of geometric phase
effects and is highly parallelizable.37,52 The surface function
Hamiltonian is diagonalized in parallel using a parallel imple-
mentation of the implicitly restarted lanzcos method (IRLM).53-55

A careful choice of the numerical quadrature scheme and a
large set of quadrature points are required in order to obtain
accurate matrix elements of the vector potential terms in eq 13.11

The singularities in the terms involvingA2 are the most
troublesome because they involver-2. The volume element
cancels one of ther-1 singularities but the integration of the
remainingr-1 singularity gives rise to a divergent logarithmic
function. Fortunately, the potential energy surfaceV(x) is highly
repulsive near a conical intersection so that, for low collision
energies, the nuclear motion wave function has essentially zero
amplitude near the conical intersection. Thus, the problem with
the singularA2 terms can be handled by introducing a cutoff
so that whenA2 > Acut, we setA2 ) Acut. The cutoff allows the
numerical integrals to converge. The cutoff parameterAcut is
determined from convergence studies and is increased until the
solutions become insensitive to it.11,35,37 For high collision
energies, more electronic states must be included and the vector
potential approach must be generalized to include the off-
diagonal matrix elements which couple the different electronic
states (see eq 5). For more details on nonadiabatic methods see
ref 5.

A. Applications in Chemical Reaction Dynamics.The

methodology for solving the generalized Born-Oppenheimer
equation described above was first applied to the inelastic
scattering of H+ O2(V, j) f H + O2(V′, j′) at low collision
energies and zero total angular momentum (i.e.,J ) 0).11,26,35,36

The ground-state electronic potential energy surface for the HO2

molecule contains a conical intersection which occurs for
T-shaped (C2V) geometries. It also contains two conical intersec-
tions which occur for linear geometries. As mentioned in section
II, these conical intersections occur along a one-dimensional
curve within the three-dimensional nuclear parameter space. The
shape and topology of this one-dimensional curve can be quite
complicated. It may consist of several branches and/or loops.
Specialized electronic structure techniques are often required
to accurately map out the shape of this one-dimensional
subspace.56,57Fortunately, the minimum energy pathway around
each of the linear conical intersections in HO2 exhibits a barrier
of about 0.42 eV relative to the asymptotic H+ O2 potential
well.58 Thus, for total scattering energies below 0.42 eV, the
nuclear motion wave function will not have appreciable
amplitude along the entire minimum energy pathway around
the linear conical intersections, and the effects of the geometric
phase associated with these intersections can be ignored.
However, the minimum energy pathway around theC2V conical
intersection contains no barrier.58 Thus, the nuclear motion wave
function can have significant amplitude along the entire
minimum energy pathway around this intersection even for very
low scattering energies near threshold. To quantify the effects
of the geometric phase due to theC2V conical intersection, two
sets of calculations were performed. One set included the
geometric phase by solving the generalized Born-Oppenheimer
eq 13. The other set did not include the geometric phase and
solved the standard Born-Oppenheimer eq 9. Both sets of
calculations implemented single-valued boundary conditions on
the nuclear motion wave function. Significant differences
between the two sets of calculations were observed. The
transition probabilities were computed as a function of total
energy. Many of the probabilities which include the geometric
phase were found to be shifted in energy (i.e., “out-of-phase”)
with respect to those which did not include the geometric
phase.26 The geometric phase also lowered the averageJ ) 0
cumulative transition probability for the lowest vibrational
transition by 35%.35 Significant differences were also seen in
the resonance spectrum. The geometric phase altered many of
the resonance energies and lifetimes. In addition, new resonances
appeared when the geometric phase was included which were
not present in the spectrum calculated without the geometric
phase. Similarly, many of the resonances in the spectrum
calculated without the geometric phase were missing in the
spectrum which included the geometric phase.26,35 Gauge
invariance was also tested by performing a third set of
calculations which solved the generalized Born-Oppenheimer
eq 13 but withl ) 2 (see eq 15). Thel ) 2 results do not
include geometric phase effects and should be identical to the
results based on solving the standard Born-Oppenheimer eq 9
with single-valued boundary conditions (i.e., thel ) 0 case).
As expected, excellent agreement was observed between thel
) 2 and l ) 0 calculations for the resonance spectrum and
transition probabilities which indicates that the calculations are
well converged and that gauge invariance is satisfied.26,35 In
summary, the geometric phase significantly alters the results
of the calculations on H+ O2 inelastic scattering forJ ) 0 and
it must be included in the theoretical treatment in order to obtain
the correct results. However, the effects of the geometric phase
on physical observables such as integral and differential cross

Feature Article J. Phys. Chem. A, Vol. 107, No. 35, 20036743



sections requires calculations forJ > 0. That is, a separate
calculation for each value ofJ and inversion parityP ) ( are
required up to some maximum value ofJ ) Jmax (whereJmax is
determined from convergence studies). The contributions from
each value ofJ are then added together to obtain fully converged
cross sections. To investigate the importance of the geometric
phase on fully converged cross sections, the vector potential
approach was recently extended to include nonzero total angular
momentum. Applications of this method to the H+ H2 reaction
(and its isotopic variants) will be discussed in Section IV.

B. Applications in Molecular Spectra. The methodology
for solving the generalized Born-Oppenheimer equation de-
scribed above was also used to investigate the effects of the
geometric phase on the vibrational states of HO2

35 and Na3 36,39

for zero total angular momentum (i.e.,J ) 0). The bound state
calculations use the same computer codes that are used to
compute the surface functions for the scattering calculations.
However, the bound state calculations use a renormalized
Numerov propagator59 and an energy bisection algorithm to
propagate the coupled-channel radial equations and obtain the
vibrational energies and wave functions (see ref 35 for more
details). TheC2V conical intersection in HO2 gives rise to a
geometric phase which alters the symmetry of the nuclear
motion wave function causing it to simultaneously exhibit both
even and odd symmetry (with respect to an interchange of the
two identical nuclei of16O).11,35,60,61Thus, the correct nuclear
motion wave functions exhibit even symmetry across theC2V
saddle point and odd symmetry across theC2V symmetry line
for H-O2 geometries (see Figure 5 in ref 11). The odd
symmetry for H-O2 correlates to the odd rotational levels of
O2 (because of Bose statistics only the odd rotational levels of
O2 are physically allowed).62 Four sets of bound state calcula-
tions for HO2 were performed. The first set included the
geometric phase by solving the generalized Born-Oppenheimer
eq 13, the second set ignored geometric phase effects and solved
the standard Born-Oppenheimer eq 9 using a single-valued
basis set which exhibits even symmetry across theC2V saddle
point, the third set also ignored geometric phase effects but used
an odd single-valued basis set, and the fourth set tested gauge
invariance by solving eq 13 withl ) 2. For low-lying vibrational
states, the vibrational energies for the even and odd states are
essentially degenerate. However, for higher-lying states, tun-
neling across theC2V saddle point gives rise to small energy
differences between the even and odd energy levels. For high-
lying states, whose energy lies above theC2V saddle point, large
differences (up to100 cm-1) between the even and odd energy
levels occur. However, even the very high-lying vibrational
wave functions remain localized over the deep attractive HO2

potential well and do not extend along the entire minimum
energy pathway around theC2V conical intersection.35 Thus, the
results of calculations which include the geometric phase are
identical to those which ignore the geometric phase but use a
single-valued basis set which exhibitseVen symmetry across
the C2V saddle point.35 We note that, even though there are no
geometric phase effects on the vibrational states of HO2, the
symmetry must be taken into account. The first bound state
calculations for HO2 did not take into account the change in
symmetry and computed the wrong states (i.e., those of odd
symmetry).63

The ground-state electronic potential energy surface for the
Na3 molecule contains a conical intersection which occurs for
equilateral triangle (D3h) geometries. Because of the 3-fold
symmetry of Na3, three identical barriers occur along the
minimum energy pathway around the conical intersection. These

barriers are relatively small so that significant geometric phase
effects can occur even for low-lying vibrational states. The
geometric phase alters the symmetry of the vibrational wave
functions, so that for a given fixed value of the hyper-radiusF
the functions which are even (odd) across the three symmetry
lines which bisect the three symmetric potential wells are
simultaneously odd (even) across the three symmetry lines which
bisect the saddle points between the wells (see Figures 7 and 8
in ref 36). Two sets of bound state calculations for Na3 were
performed. One set included the geometric phase by solving
the generalized Born-Oppenheimer eq 13 withl ) 3, and the
other set ignored geometric phase effects and solved the standard
Born-Oppenheimer eq 9 using a single-valued basis set. For
each set of calculations, the vibrational states of even and odd
symmetry (with respect to the symmetry lines which bisect the
wells) were computed.36 As expected, the geometric phase
shifted the vibrational energies for many of the vibrational states
whose energy lies near or above that of the barriers.36 The
geometric phase causes the vibrational states of even (odd)
symmetry to be shifted higher (lower) in energy relative to those
which do not include the geometric phase. These energy shifts
are due to the fact that the even (odd) vibrational states which
include the geometric phase exhibit (do not exhibit) a node
across the saddle points, whereas those which do not include
the geometric phase do not exhibit (exhibit) a node. The bound
state calculations for Na3 were later extended to include states
of E symmetry and the state assignments for the different
vibrational modes (i.e., symmetric stretch, asymmetric stretch,
and bend).39 The state assignments showed that the energy shifts
which are due to the geometric phase result in a reordering of
many of the energy levels (relative to the calculation which
ignores geometric phase effects). In particular, the low-lying
states of even symmetry (A1) lie above the states ofE symmetry,
and the low-lying states of odd symmetry (A2) lie below the
states ofE symmetry when the geometric phase is included.
The reverse ordering occurs in calculations which ignore the
geometric phase. For the very lowest vibrational states, the
energy differences between theA1 and E and theA2 and E
symmetry states are very small so that the reordering due to
the geometric phase is difficult to detect. In summary, the
geometric phase reorders many of the vibrational energy levels
for Na3 and must be included in the theoretical treatment in
order to obtain the correct results. Calculations of the vibrational
levels for nonzero total angular momentum using a new and
more accurate potential energy surface are currently underway.64

IV. Geometric Phase Effects in the H+ H2, H + D2, and
D + H2 Reactions

Because of its fundamental nature, the H3 triatomic molecule
is an excellent candidate for accurate theoretical and experi-
mental study. In this section, we review some of the past
theoretical and experimental studies on the H+ H2 reaction
system with an emphasis on those related to geometric phase
effects. Recent applications of the newly developed vector
potential approach to this reaction system are discussed. In
sections IVa and IVb, we present new quantum reactive
scattering results using this methodology for the D+ H2 and H
+ H2 reactions, respectively.

The H3 molecule contains a conical intersection which occurs
between the ground and first excited electronic states for
equilateral (D3h) nuclear geometries. The minimum energy of
this intersection is quite high (2.7 eV relative to the bottom of
the H2 well) so that, for low collision energies, the Born-
Oppenheimer approximation is valid and the nuclear dynamics
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can be accurately calculated using a single (ground state)
electronic potential energy surface. However, because of the
low potential energy barrier (0.42 eV) between the different
nuclear arrangements, the nuclear motion wave function can
have significant amplitude along the entire minimum energy
pathway around the conical intersection even for relatively low
collision energies. Thus, a correct theoretical treatment of the
H + H2 reaction (and its isotopic variants) must include
geometric phase effects.

The first quantum reactive scattering calculations to include
geometric phase effects were reported in 1990 by Lepetit and
Kuppermann32 for the H + H2 system and zero total angular
momentum (J ) 0). They solved the standard Born-Oppen-
heimer eq 9 and included the geometric phase by implementing
double-valued boundary conditions on the nuclear motion wave
function. These calculations were later extended to include all
J e 34 to obtain the first fully converged scattering results to
include the geometric phase by Wu, Kuppermann, and Lepetit.33

For paraf para and orthof ortho transitions, the geometric
phase was reported to significantly alter the differential cross
sections and to a lesser extent, integral cross sections, for total
energies of 1.2 eV and below (where direct (nonreactive)
processes dominate). Later, these calculations were extended
to much higher energies (2.6 eV) in order to investigate the
effects of the geometric phase on the paraf ortho and ortho
f para transitions (i.e., exchange (reactive) processes).65

Significant geometric phase effects were reported in the
rotational distributions and integral cross sections for energies
above 1.8 eV.65

In 1991, Kliner, Adelmann, and Zare66 (see also ref 67)
performed rotational state distribution measurements for the D
+ H2 reaction. Significant differences were observed between
the experimental results and several quantum reactive scattering
calculations68-70 for H2(V ) 1, j ) 1) and a collision energy of
1.0 eV (which corresponds to a total energy of 1.8 eV). The
original theoretical calculations ignored geometric phase effects.
In 1993, Kuppermann and Wu performed fully converged
quantum reactive scattering calculations for the D+ H2 reaction
which included geometric phase effects.71 The persistent dif-
ferences between the experimental results and the original
theoretical calculations were reported to be due almost entirely
to the geometric phase.71 Thus, this experiment is often cited
as the first experimental measurement of a geometric phase
effect in a chemical reaction. Kuppermann and Wu also reported
large geometric phase effects in the differential cross sections
for a total energy of 1.8 eV but no experimental rotationally
resolved differential cross sections were available for compari-
son. They also reported significant geometric phase effects in
the differential cross sections for a total energy of 1.25 eV.
However, no geometric phase effects in the integral cross
sections were reported at this energy. At 0.78 eV, no geometric
phase effects were reported in either the integral or differential
cross sections.

Experimental differential cross sections for the H+ D2 (V )
0, j ) 0, 1, 2)f HD + D reaction became available in 1993.72

In 1995, Wu and Kuppermann73 pursued calculations for this
system and calculated differential cross sections at a total energy
of 1.481 eV both with and without the geometric phase.
Significant differences between the two sets of calculations were
observed, and the calculations which include the geometric phase
were reported to be in much better agreement with the
experimental results.73 Additional calculations in the energy
rangeEtot ) 1.42-1.53 eV showed a pronounced resonance
close to 1.481 eV for the H+ D2 (V ) j ) 0) f HD (V′ ) 0,

j′ ) 4, 5)+ D transitions due entirely to the geometric phase.74

No resonance was observed when the geometric phase was
neglected. In 1997, Wrede and Schnieder75 attempted to
experimentally verify the predicted resonance by performing
high-resolution molecular beam experiments in the energy range
Etot ) 1.461-1.491 eV. Surprisingly, they did not see any
experimental evidence for the theoretically predicted resonance.
Furthermore, their differential cross section forEtot ) 1.481
eV did not agree with the original experiments of Zare and co-
workers72 or the theoretical results of Wu and Kuppermann73

which include the geometric phase. In fact, their results are in
excellent agreement with theoretical treatments whichdo not
include the geometric phase.52,76-81 Previous experiments by
Schnieder et al.82 at a slightly lower energyEtot ) 1.471 eV
are also in excellent agreement with theoretical calculations
which ignore geometric phase effects. The original calculations
by Wu and Kuppermann used the LSTH potential energy
surface.83 Unpublished calculations by Wu and Kuppermann
for the differential cross section summed over all final vibra-
tional and rotational states atEtot ) 1.481 eV using the newer
BKMP2 surface84 show no geometric phase effects and are in
good agreement with the new experimental results of Wrede
and Schnieder.75 However, there are significant discrepancies
in the state resolved differential cross sections computed by Wu
and Kuppermann using the BKMP2 surface and the experi-
mental results of Wrede and Schnieder.75 Furthermore, the state
resolved differential cross sections computed by Wu and
Kuppermannwithoutthe geometric phase using either the LSTH
or BKMP2 surfaces are significantly different than those
computed by several other theoretical groups.52,76-81 The
theoretical results by Wu and Kuppermann which include the
geometric phase and use the BKMP2 surface are not consistent
with their original calculations using the LSTH surface.73 This
discrepancy has been attributed to subtle differences between
the LSTH and BKMP2 surfaces.75,85 The geometric phase
resonance predicted by Wu and Kuppermann is shifted down
to 1.442 eV on the BKMP2 surface.85,86

Additional experiments were performed at much higher
energies (Etot ) 2.391 eV) and compared to quasiclassical
trajectory calculations (which do not include the geometric
phase) on the LSTH and the double-many-body-expansion
(DMBE) surfaces.87 Reasonably good agreement between the
quasiclassical trajectory results and experiment was found for
both of these surfaces. Experiments at an energy ofEtot ) 2.86
eV (i.e.,aboVe the minimum energy of the conical intersection)
have also been performed.88 These experiments were compared
to quasiclassical trajectory calculations on the BKMP2 surface
(which omit both the geometric phase and nonadiabatic coup-
ling). Surprisingly good agreement was found between the
experimental results and quasiclassical trajectory calculations.
Recently, more detailed experimental studies atEtot ) 2.391
eV have been reported and compared to accurate quantum
mechanical calculations (which do not include the geometric
phase) on the BKMP2 PES.89 Excellent agreement between the
experimental and quantum mechanical calculations for several
state resolved differential cross sections was reported.

In summary, good agreement has been observed between the
recent experimental results of Wrede and Schnieder and several
theoretical treatments whichdo not include the geometric
phase: the quasiclassical trajectory studies atEtot ) 2.391 and
2.86 eV and especially the quantum mechanical studies atEtot

) 1.481 and 2.391 eV. This agreement suggests that the effects
of the geometric phase are not very important for the H+ D2

reaction at all of these energies. The absence of geometric phase
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effects was somewhat surprising and motivated additional
theoretical calculations. The vector potential approach was
recently applied to the H+ D2 reaction.37 Surprisingly, these
calculations showed that the geometric phase effects completely
cancel out in all of the state resolved integral and differential
cross sections for all energies when the contributions from even
and odd values of total angular momentum (J) are added
together (forJ e 5). The cancellation occurred for both the
LSTH and BKMP2 surfaces and appears to be related to the
alternating symmetry of the WignerD functions with respect
to even and oddJ. If the cancellation is due to symmetry, then
it should be independent of the potential energy surface and
should also hold for allJ. This would imply that there are no
geometric phase effects in the fully converged integral and
differential cross sections for all energies and would explain
why geometric phase effects have not been seen in any of the
experimentally measured state resolved differential cross sec-
tions for the H+ D2 reaction. If the cancellation is due to
symmetry, then it should also occur for all A+ B2 reactions
including the D+ H2 reaction. This would question the validity
of the geometric phase results of Kuppermann and Wu for the
D + H2 reaction71 and also the experimental results of Kliner,
Adelmann, and Zare.66 Kuppermann and Wu85 have recently
published additional results for the H+ D2 reaction based on
both the LSTH and BKMP2 surfaces and have claimed that
the cancellation of geometric phase effects does not hold for
all J. However, their state resolved differential cross sections
without the geometric phase using either the LSTH or BKMP2
surfaces still do not agree with the experimental results of Wrede
and Schnieder75 or the results of several other theoretical
groups.52,76-81 Thus, it appears that there may be errors in the
calculations by Kuppermann and Wu which need to be resolved.
A possible explanation for these discrepancies was suggested
in 1999.50 In body-frame symmetrized hyperspherical coordi-
nates, an Eckart singularity occurs at the north pole (θ ) 0)
and the another one occurs at the equator (θ ) π/2) (see ref 50
for details). Our reactive scattering calculations use a basis set
and methodology which accurately treatsboth of these singu-
larities.37,52 However, the methodology which is used by
Kuppermann and Wu is not capable of treating both of these
singularities. Significant errors can occur even for low collision
energies if the Eckart singularities are not properly treated. A
proper treatment of these singularities requires the introduction
of double-valued functions of the hyperangleφ and the use of
Jacobi polynomials in the hyperangleθ.50

A. Quantum Reactive Scattering Calculations for the D
+ H2 f HD + H Reaction. In this section, we report the results
of accurate quantum reactive scattering calculations for the D
+ H2 (V, j) f HD (V′, j′) + H reaction at 48 values of total
energy in the range 0.4-2.32 eV. The calculations are based
on the same numerical parameters and basis sets that were used
in previous calculations on the H+ D2 reaction.52 Reaction
probabilities, integral, and differential cross sections are com-
puted using the BKMP2 potential energy surface for all values
of total angular momentumJ e 19. The calculations are
performed both with and without the geometric phase. The
geometric phase calculations are done using two different
methods. One method uses the vector potential approach which
is based on solving the generalized Born-Oppenheimer eq 13
with single-valued boundary conditions. The second method uses
the double-valued basis set approach which is based on solving
the standard Born-Oppenheimer eq 9 with double-valued
boundary conditions. As expected, these two methods give
identical results.

Figure 2 is a contour plot of the BKMP2 potential energy
surface for DH2 at F ) 3.27a0. TheD3h conical intersection is
clearly visible just to the right of the origin. Because we are
usingmass-scaledsymmetrized hyperspherical coordinates, the
D3h conical intersection isnot located at the origin of our
coordinate system. The conical intersection is located atθ )
11.537° andφ ) 0 which corresponds to (x ≈ 0.1, y ) 0). Its
location in (θ, φ) space is independent of the hyper-radiusF.
Figure 2 shows that the minimum energy pathway around the
conical intersection forF ) 3.27a0 contains a barrier of about
0.55 eV which occurs for (x ) -1, y ) 0), a barrier of about
0.71 eV which occurs for (x ) 0.45,y ) 0), and two barriers
of about 0.51 eV each which occur for (x ) 0.18,y ) (0.5).
The heights of these barriers vary withF. As F is decreased
from 3.27 a0, the barrier atx ) -1 decreases toward its
minimum value (0.42 eV), the barriers atx ) 0.18 disappear,
and the barrier atx ) 0.45 increases. AsF is increased from
3.27a0, the barrier atx ) -1 increases, the barrier atx ) 0.45
disappears, and the barriers atx ) 0.18 decrease toward their
minimum values (0.42 eV) and move to linear geometries (the
equator) atx ≈ 0.63.

Because the nuclei of the two H atoms in DH2 are spin-1/2
fermions,62 the total molecular wave function (Ψtot of eq 8) must
be antisymmetric under a permutation (P) of the two identical
nuclei. Because the nuclear spin isS) 1/2, we have a total of
(2S + 1)2 ) 4 nuclear spin states with (2S + 1)(S + 1) ) 3
being symmetric and (2S+ 1)S) 1 being antisymmetric. The
symmetric states have the larger statistical weight and are called
ortho-H2. The antisymmetric states are calledpara-H2. Because
the ground electronic state of H2 is a1∑g

+ state,90 we know that
asymptotically (i.e., for largeF) the electronic wave function
for D-H2 is symmetric. Because the total wave function must
be antisymmetric and the electronic wave function is symmetric,
we know that forortho (para)-H2 the nuclear motion wave
function (Ψ) must be antisymmetric (symmetric) for D-H2.
Thus, forortho (para)-H2 the nuclear motion wave function is
antisymmetric (symmetric) across thex axis to the right of the
conical intersection (i.e., forx > 0.1) in Figure 2. The nuclear
motion wave functions for largeF andx > 0.1 correlate to the
rovibrational states of the H2 diatomic molecule. Forortho

Figure 2. Contour plot of the DH2 potential energy surface with the
hyper-radiusF fixed at 3.27a0. This plot is a stereographic projection
of the surface of an upper half-sphere. The hyperangleθ runs from 0
at the north pole (x ) 0, y ) 0) to π/2 at the equator (heavy circle).
The hyperangleφ, the azimuthal angle, is measured from the positive
x axis and goes toπ in the counterclockwise direction and to-π in
the clockwise direction. The contours start at 0.32 eV and end at 4.0
eV. The spacing between the dark contours is 0.16 eV with a dashed
contour halfway between. All energies are relative to the bottom of
the H2 potential well. The conical intersection is clearly visible just to
the right of the origin.
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(para)-H2, only the odd (even) rotational levels of H2 are
compatible with Fermi statistics. The geometric phase alters
the symmetry of the real electronic wave function for DH2 so
that it is antisymmetric across thex axis to the left of the con-
ical intersection (i.e., forx < 0.1) in Figure 2. This change in
symmetry is a direct consequence of the wave function’s
double-valuedness (see eq 11 and ref 60). Thus, in order for
the total molecular wave function to satisfy Fermi statistics for
all nuclear geometries, forortho (para)-H2, the nuclear motion
wave function must be symmetric (antisymmetric) across thex
axis to the left of the conical intersection (i.e., forx < 0.1) in
Figure 2.

Figure 3 plots the difference between the lowest surface
function energy computed with and without the geometric phase
at F ) 2.96a0 as a function of total angular momentumJ and
inversion parityP ) (. The surface function energies which
include the geometric phase were computed using both the
vector potential approach and the double-valued basis set
approach. As expected, both methods produce essentially
identical low-lying surface function energies. The upper (lower)
two plots are forpara (ortho)-H2. For all cases, the energy
differences alternate sign with respect to even and oddJ, and
the magnitude of the energy differences decreases with increas-
ing J. The alternating sign of the energy differences can be
traced to the alternating symmetry of the WignerD functions.
For example, forJ ) 0, 1, and even parity (P ) +), the properly
symmetrized nuclear motion wave function can be expressed
in the following way37,50

where the normalized WignerD̃0M
J functions are symmetric or

antisymmetric under an interchange of the two identical nuclei
for even or oddJ, respectively. A proper treatment of the
geometric phase requires the introduction of the phase factor

exp(ilη/2) where l is an odd integer. Ignoring the geometric
phase corresponds to settingl ) 0. This phase factor alters the
symmetry of the nuclear motion wave function across thex axis
to the left of the conical intersection (i.e., forx < 0.1) in Figure
2. For J ) 0+, the part of the nuclear motion wave function
which is in brackets in eq 19 is symmetric forq ) + (the upper
sign), or antisymmetric forq ) - (the lower sign) for D-H2.50

For J ) 1+, the symmetries are reversed. Thus, forJ ) 0+ and
para-H2, we must chooseq ) + in eq 19 so that the overall
nuclear motion wave function (ΨJMPq) is symmetric asymptoti-
cally (i.e., for D-H2). When the geometric phase is ignored,
the nuclear motion wave function (ΨJMPq) is symmetric across
the x axis both to the right (i.e., forx > 0.1) and left (i.e., for
x < 0.1) of the conical intersection. However, when the
geometric phase is included, the nuclear motion wave function
is symmetric to the right and antisymmetric to the left of the
conical intersection. ForF ) 2.96 a0, the antisymmetry
corresponds to a node in the wave function which occurs across
the barrier located at (x ) -1, y ) 0) (see Figure 2). This node
shifts the surface function energy higher relative to the purely
symmetric case which ignores the geometric phase. Thus, the
energy differenceEGP - ENGP is positive (see Figure 3). ForJ
) 1+ andpara-H2, we must still chooseq ) + in eq 19 so that
the overall nuclear motion wave function (ΨJMPq) is symmetric
asymptotically (i.e., for D-H2). For this case, the normalized
Wigner D̃0M

1 functions are antisymmetric. When the geometric
phase is ignored, the part of the nuclear motion wave function
which is in brackets in eq 19 is antisymmetric to the right and
left of the conical intersection. However, when the geometric
phase is included, the part of the nuclear motion wave function
which is in brackets in eq 19 is antisymmetric to the right and
symmetric to the left of the conical intersection. The node in
the antisymmetric surface function which ignores the geometric
phase occurs across the barrier located at (x ) -1, y ) 0) and
causes the energies to lie higher relative to the symmetric surface
function which includes the geometric phase. Thus, the energy
differenceEGP - ENGP is negative (see Figure 3). Forortho-

Figure 3. Difference between the lowest surface function energy which includes the geometric phase (denoted byEGP) and that which does not
(denoted byENGP) is plotted as a function of total angular momentumJ and inversion parityP for both ortho- andpara-H2. The calculations are
at a fixed hyper-radius ofF ) 2.96a0. The data points are connected by line segments to help guide the eye.

Ψi
JMPq)( ) 1

x2
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H2, we must chooseq ) -, and all of the above symmetry
arguments and energy shifts are reversed (see Figure 3). The
alternating sign of the energy differences in Figure 3 also occurs
for all of the other values ofF within the interaction region 2.2
e F e 3.45a0.

The state-to-state reaction probabilities are given by

whereNj
JP denotes the number of initial orbital angular mo-

mentuml for a givenJ, P, andj. We note that the sums overl
and l′ in eq 20 are chosen to be consistent with the identityP
) j + l ) j′ + l′. The scattering matrix elementSVjl ,V′j′l′

JP is the
appropriately symmetrized scattering matrix element from the
initial channel (Vjl ) to the final channel (V′j′l′). For A + B2

systems, we can chooseSVjl ,V′j′l′
JP ≡ x2 Sτ)1Vjl ,τ′)2V′j′l′

JP .91

Figure 4 plots the reaction probabilities for D+ H2 (V ) 1,
j ) 0) f HD (V′ ) 0, j′ ) 0) + H as a function of total energy
for all J e 19. We note that, for zero initial rotational angular
momentum (i.e.,j ) 0), the only nonzero reaction probabilities
are for evenJ + P. The solid curves and data points do not
include the geometric phase. The short dashed curves and open
squares include the geometric phase and are based on the vector
potential approach which accurately treats the location of the
conical intersection. At high energies, significant “out-of-phase”
behavior occurs between the results which include the geometric
and those which do not. The “out-of-phase” behavior alternates
“phase” with respect to even and oddJ. For example, com-
pare the solid and dashed curves forJ ) 0-3 near 2.15 eV.
For J ) 0, the dashed curve is above the solid curve, and forJ
) 1, the dashed curve is below the solid curve. Similar behavior
occurs forJ ) 2 and 3. More alternating “out-of-phase” behavior
can be seen for other energies and values ofJ (especially for
Etot > 1.9 eV andJ g 16). The alternating “out-of-phase”
behavior in the reaction probabilities appears to be related to

the alternating symmetry of the WignerD functions with respect
to even and oddJ. We have recently extended the calculations
to include allJ e 34 and have verified that the “out-of-phase”
behavior continues to hold for all of these higher values ofJ as
well.38

The differential cross sections for the D+ H2 reaction are
given by

where the reactive scattering amplitude is given by

and

where theT matrix is defined asT ) I - S and S is the
scattering matrix. The magnitude of the wave vectorkhVj is given
by khVj ) a kVj wherea2 ) 2[mD/(mD + 2 mH)]1/2, kVj

2 ) 2µ(Etot

- εVj)/p2, Etot is the total energy,εVj are the diatomic rovibra-
tional energies of H2, andµ ) [mD mH mH/(mD + 2 mH)]1/2 is
the three-body reduced mass. We have chosen the direction of
the initial kVj vector to lie along the space framez axis so that
M ) m.44 The polar anglesθS andφS define the direction of
the center-of-mass velocity vector of the final HD molecule
relative to the center-of-mass velocity vector of the initial D
atom. Thus,θS ) 180° and 0° correspond to backward and
forward scattering, respectively. We note that the sums overl

Figure 4. Reaction probabilities for D+ H2 (V ) 1, j ) 0) f HD (V′ ) 0, j′ ) 0) + H are plotted as a function of total energy for all values of
J e 19. The solid curves and data points do not include the geometric phase. The short dashed curves and open squares include the geometric phase
and are based on the vector potential approach which accurately treats the location of the conical intersection. The numbers labeling each set of
curves denote the value ofJP. The curves are shifted to make viewing easier. The flat part of the curves near 0.5 eV corresponds to zero probability
and indicates the value of the shift. The data points are calculated values and the curves are a cubic spline fit.
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and l′ in eq 22 average out theφS dependence so thatf is a
function of θS only. The degeneracy averaged cross sections
are given by

Figures 5 and 6 plot the degeneracy averaged rotational
distribution and differential cross sections for D+ H2 (V ) 1,
j ) 1) f HD (V′ ) 1, j′) + H at Etot ) 1.8 eV summed over
all values ofJ e 19, respectively. The integral cross sections
in Figure 5 are computed by numerically integrating eq 23 over
the solid angle dΩ. There are two sets of curves in Figures 5
and 6. The solid curves and data points do not include the
geometric phase. The short dashed curves and open squares
include the geometric phase and are based on the vector potential
approach. In both figures, the results which include the
geometric phase are essentially identical to those which do not
include the geometric phase. Figures 5 and 6 show that all of

the geometric phase effects cancel out in both the integral and
differential cross sections when the contributions from even and
odd values ofJ are added together (see also Figures 9-15 of
ref 37). The cancellation of geometric phase effects in both the
integral and differential cross sections with respect to the sum
over J occurs for all of the energies and all of the initial and
final states that we have looked at. The results in Figures 5 and
6 are not fully converged with respect to the sum overJ in eq
22. However, we have recently extended the calculations to
include all J e 34 and have verified that the cancellation
continues to hold for fully converged integral and differential
cross sections.38

Figures 4-6 and the recent calculations38 which include all
J e 34 confirm the conclusions of ref 37 which claim that the
cancellation of geometric phase effects in the integral and
differential cross sections should continue to hold for higher
values of J. These conclusions are not consistent with the
geometric phase calculations of Kuppermann and Wu which
predict large geometric phase effects in the fully converged
integral and differential cross sections for the D+ H2 and H+
D2 reactions (see the discussion at the beginning of section IV).
However, as noted above, the state resolved differential cross
sections computed by Kuppermann and Wu for H+ D2 which
do not include the geometric phase are significantly different
than those computed by several other theoretical groups and
the recent high-resolution molecular beam experiments. In
contrast, our state resolved differential cross sections for H+
D2 which do not include the geometric phase are in excellent
agreement with the results of the other theoretical groups and
the recent high-resolution molecular beam experiments.52 Our
double-valued basis set approach for including the geometric
phase uses the same computer codes that were used in the
calculations for H+ D2 which do not include the geometric
phase.52 The only difference is one line of code which replaces
the basis set exp(imφ) with exp(i(m + 1/2)φ). This change is
so trivial that it seems unlikely that a mistake could be made.
Furthermore, our geometric phase results based on the vector
potential approach are in excellent agreement with those based
on our double-valued basis set approach. Thus, we are confident
that all of our geometric phase calculations are correct. Our
geometric phase results for the D+ H2 reaction also question
the validity of the experimental results of Kliner, Adelmann,
and Zare66 which are reported to be in agreement with the
geometric phase calculations of Kuppermann and Wu.71 How-
ever, the rotational distribution for D+ H2 (V ) 1, j ) 1) f
HD (V′ ) 1, j′) + H at Etot ) 1.8 eV was not directly measured
experimentally. It was determined by subtracting two other
experimentally measured rotational distributions. This procedure
makes several assumptions and is prone to errors. Furthermore,
this experiment has not yet been confirmed. Clearly, a high-
resolution molecular beam experiment for the D+ H2 reaction
at 1.8 eV is needed in order to resolve the remaining discrep-
ancies between theory and experiment.

B. Quantum Reactive Scattering Calculations for the H
+ H2 Reaction.In this section, we report the results of accurate
quantum reactive scattering calculations for the H+ H2 (V, j)
f H2 (V′, j′) + H reaction at 96 values of total energy in the
range 0.5-2.42 eV. The calculations are based on the same
numerical parameters and basis sets that were used in previous
calculations on the H+ D2 and D+ H2 reactions.38,52Reaction
probabilities, integral, and differential cross sections are com-
puted using the BKMP2 potential energy surface for all values
of total angular momentumJ e 10. The calculations are
performed both with and without the geometric phase. The

Figure 5. Degeneracy averaged rotational distribution is plotted for
D + H2 (V ) 1, j ) 1) f HD (V′ ) 1, j′) + H at Etot ) 1.8 eV summed
over allJ e 19. Two curves are plotted. The solid curve and data points
do not include the geometric phase. The short dashed curve and open
squares include the geometric phase and are based on the vector
potential approach which accurately treats the location of the conical
intersection. The geometric phase results lie directly on top of the results
which ignore the geometric phase.

Figure 6. Degeneracy averaged differential cross sections are plotted
for D + H2 (V ) 1, j ) 1) f HD (V′ ) 1, j′) + H at Etot ) 1.8 eV
summed over allJ e 19. The number next to each curve labels the
value ofj′. The solid curves and data points do not include the geometric
phase. The short dashed curves and open squares include the geometric
phase and are based on the vector potential approach which accurately
treats the location of the conical intersection. The geometric phase
results are almost identical to the results which ignore the geometric
phase.
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geometric phase calculations are done using two different
methods. One method uses the vector potential approach which
is based on solving the generalized Born-Oppenheimer eq 13
with single-valued boundary conditions. The second method uses
the double-valued basis set approach which is based on solving
the standard Born-Oppenheimer eq 9 with double-valued
boundary conditions. As expected, these two methods give
identical results.

Figure 7 is a contour plot of the BKMP2 potential energy
surface for H3 at F ) 3.27 a0. The D3h conical intersection is
clearly visible at the origin of the plotθ ) 0 (i.e.,x ) 0, y )
0). Its location in (θ, φ) space is independent of the hyper-
radius F. Figure 7 shows that the minimum energy pathway
around the conical intersection forF ) 3.27a0 contains three
barriers of about 0.42 eV each which occur at (x ) -1, y ) 0)
and (x ≈ 0.5, y ) (0.86) and three barriers of about 0.53 eV
each which occur at (x ) 0.4,y ) 0) and (x ≈ -0.2,y ) (0.35).
The heights of these barriers vary withF. As F is increased or
decreased from 3.27a0, the three barriers at (x ) -1, y ) 0)
and (x ≈ 0.5,y ) (0.86) increase. AsF is increased from 3.27
a0, the three barriers at (x ) 0.4, y ) 0) and (x ≈ -0.2, y )
(0.35) decrease and eventually disappear. AsF is decreased
from 3.27a0, these three barriers increase.

Because the nuclei in H3 are spin 1/2 fermions,62 the total
molecular wave function (Ψtot of eq 8) must be antisymmetric
under a permutation (P) of any two identical nuclei. Because
the nuclear spin isS ) 1/2, we have a total of (2S + 1)3 ) 8
nuclear spin states. Because of the 3-fold symmetry of H3, the
nuclear spin states can be classified using the irreducible
representations of the permutation groupS3. The irreducible
representations ofS3 are A1 (symmetric),A2 (antisymmetric),
and E (doubly degenerate). The number of spin states ofA1,
A2, andE symmetry are given by (2S+ 1)(2S+ 3)(S+ 1)/3 )
4, (2S + 1)(2S - 1)S/3 ) 0, and (2S + 1)(S + 1)8S/3 ) 4,
respectively.36,92 Because theE representation is two-dimen-
sional, there are two distinct spin states ofE symmetry, and
each one consists of two components which makes a total of
four. The two components in each spin state are labeled by(ms

(thez component of the total nuclear spin). The nuclear motion
wave function (Ψ) can also be classified using the irreducible
representations of the permutation groupS3. Because the ground
state of H2 is a 1∑g

+ state,90 we know that asymptotically (i.e.,
for largeF) the electronic wave function for H-H2 is symmetric.
Thus, for theA1 (symmetric) nuclear spin states, we must choose
the nuclear motion wave function (Ψ) to be of A2 symmetry

(i.e., antisymmetric) for H-H2 so that the total wave function
is antisymmetric. Similarly, for theE nuclear spin states, we
must choose the nuclear motion wave function (Ψ) to be ofE
symmetry for H-H2. The two distinct nuclear spin states ofE
symmetry combine with each doubly degenerate nuclear motion
wave function ofE symmetry to form two symmetric and two
antisymmetric functions. Only the two antisymmetric functions
are physically allowed. Because the real electronic wave function
for H3 is symmetric for H-H2, we know that it is symmetric
across thex axis for x > 0 (i.e., to the right of the conical
intersection in Figure 7). It is also symmetric across the two
symmetry lines which extend radially outward from the origin
at φ ) (120°. The geometric phase alters the symmetry of the
real electronic wave function for H3 so that it is also antisym-
metric across thex axis forx < 0 (i.e., to the left of the conical
intersection in Figure 7). It is also antisymmetric across the two
symmetry lines which extend radially outward from the origin
at φ ) (60°. The antisymmetric behavior is a direct conse-
quence of the wave function’s double-valuedness (see eq 11
and refs 36 and 60). To satisfy Fermi statistics for all nuclear
geometries, the product of the nuclear motion wave function
and nuclear spin wave function must also be double-valued and
be antisymmetric across thex axis for x > 0 and the two
symmetry lines atφ ) (120° and be symmetric across thex
axis for x < 0 and the two symmetry lines atφ ) (60°.

Figure 8 plots the reaction probability for H+ H2 (V ) 0, j
) 1) f H2(V′ ) 1, j′ ) 2) + H and zero total angular
momentum (J ) 0) as a function of total energy. The reaction
probabilities are computed using eq 20 withSVjl ,V′j′l′

JP ≡ x2
Sτ)1Vjl ,τ′)2V′j′l′

JP . Significant differences occur between the results
which include the geometric phase (the solid curve and squares)
and those which do not (the dashed curve and open squares)
for energies above about 1.9 eV. The dashed curve and open
squares include the geometric phase and are based on the vector
potential approach withl ) 3/2. The long-dashed curve and
X’s also include the geometric phase but are based on the
double-valued basis set approach. The double-valued basis set
approach uses the same computer codes that were used in the

Figure 7. Contour plot of the H3 potential energy surface with the
hyper-radiusF fixed at 3.27a0. This plot is similar to Figure 2 except
that the contours start at 0.4 eV and the conical intersection occurs at
the origin.

Figure 8. Reaction probability for H+ H2 (V ) 0, j ) 1) f H2 (V′ )
1, j′ ) 2) + H and zero total angular momentum (J ) 0) is plotted as
a function of energy. The solid curve and solid squares do not include
the geometric phase. The short dashed curve and open squares include
the geometric phase and are based on the vector potential approach
with l ) 3/2. The short dashed curve and open triangles also include
the geometric phase and are based on the vector potential approach
but are computed withl ) 9/2. The long dashed curve and Xs also
include the geometric phase but are based on the double-valued basis
set approach. The short-long dashed curve and solid triangles do not
include the geometric phase but are computed using the vector potential
approach withl ) 6/2. The data points are calculated values and the
curves are a cubic spline fit.
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calculations whichdo notinclude the geometric phase. The only
difference is one line of code which replaces the basis set exp-
(imφ) with exp(i(m + 3/2)φ). As expected, the results based on
the double-valued basis set approach are in good agreement with
those based on the vector potential approach. Gauge invariance
is also verified by performing the calculations using the vector
potential approach but withl ) 9/2 andl ) 6/2. Thel ) 9/2
results are related to those withl ) 3/2 by a gauge transforma-
tion.7,19 The dashed curve and open triangles in Figure 8 are
the results usingl ) 9/2. As expected, good agreement is
observed between thel ) 9/2 andl ) 3/2 reaction probabilities.
The small differences are due to numerical convergence errors.
The l ) 6/2 results are related to those withl ) 0 by a gauge
transformation and correspond to doing the calculations without
the geometric phase. The short-long dashed curve and solid
triangles in Figure 8 are the results usingl ) 6/2. As expected,
good agreement is observed between thel ) 6/2 and l ) 0
reaction probabilities. Gauge invariance and the good agreement
between the double-valued basis set approach and the vector
potential approach are also observed for other initial and final
states and nonzero values ofJ.

Figure 9 plots the reaction probabilities for H+ H2 (V ) 1,
j ) 0) f H2(V′ ) 2, j′) + H and zero total angular momentum
(J ) 0) as a function of total energy. Significant differences

occur between the results which include the geometric phase
(the solid curves and squares) and those which do not (the
dashed curves and open squares) for energies above about 1.9
eV. The most notable differences occur forj′ ) 5 at high
energies. The long-dashed curves and Xs also include the
geometric phase but are based on the double-valued basis set
approach. As expected, the results based on the double-valued
basis set approach are in good agreement with those based on
the vector potential approach.

The physically measurable cross sections for the H+ H2

reaction are obtained from wave functions which have been
properly antisymmetrized with respect to an interchange of any
two nuclei (see the above discussion on symmetry). This can
be done by the technique of postantisymmetrization. That is,
the cross sections are computed as if the atoms were distin-
guishable. The distinguishable atom cross sections are then
properly antisymmeterized to obtain the physical ones.91,93-95

The relevant expressions for the physically measurable dif-
ferential cross sections are given by

for j and j′ even (i.e., paraf para)

for j even andj′ odd (i.e., paraf ortho)

for j odd andj′ even (i.e., orthof para), and

for j and j′ odd (i.e., orthof ortho), wheref R and f N denote
the reactive and nonreactive scattering amplitudes, respectively.
The reactive scattering amplitude is given byf R ) f VjmfV′j′m′

τ)1,τ′)2 (kh,
kh′, θS), and f VjmfV′j′m′

τ,τ′ is given by eq 22. Similarly, the non-
reactive scattering amplitude is given byf N ) f VjmfV′j′m′

τ)1,τ′)1 (kh, kh′,
θS). The scattering angleθS denotes the direction of the center-
of-mass velocity vector of the final H2 molecule relative to the
center-of-mass velocity vector of the initial H atom. Thus,θS

) 180° and 0° correspond to backward and forward scattering,
respectively. The magnitude of the wave vectorkhVj is given by
khVj ) a kVj wherea2 ) 2/x3, kVj

2 ) 2 µ (Etot - εVj)/p2, Etot is the
total energy,εVj are the diatomic rovibrational energies of H2,
and µ is the three-body reduced massµ ) mH/x3. The sign
(-1)igp changes the sign of the interference terms between the
reactive and nonreactive contributions to eqs 24 and 27
depending upon whether the geometric phase is included (igp

) 1) or not (igp ) 0). This sign factor is a direct consequence
of the double-valuedness of the real electronic wave function
which changes sign under a cyclic permutation of the three
identical nuclei.8

Figure 10 plots the degeneracy averaged partial integral cross
sections for the H+ H2 (V ) 0, j ) 0) f H2 (V′ ) 1, j′ ) 0-3)
+ H reaction as a function of total energy. These cross sections
include allJ e 10 and are computed by numerically integrating

Figure 9. Reaction probabilities for H+ H2 (V ) 1, j ) 0) f H2 (V′
) 2, j′) + H and zero total angular momentum (J ) 0) are plotted as
a function of energy. The solid curve and solid squares do not include
the geometric phase. The short dashed curve and open squares include
the geometric phase and are based on the vector potential approach
with l ) 3/2. The long dashed curve and Xs also include the geometric
phase but are based on the double-valued basis set approach. The
number next to each set of curves labels the value ofj′. The data points
are calculated values, and the curves are a cubic spline fit.
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eq 23 over the solid angle dΩ. The solid curve and solid squares
do not include the geometric phase. The short dashed curve
and open squares include the geometric phase and are based
on the vector potential approach. For the paraf ortho transitions
there are no significant differences between the cross sections
computed with and without the geometric phase. However, for
the paraf para transitions, significant differences occur between
the cross sections computed with and without the geometric
phase even for relatively low energies. These differences are
due to the change in the sign of the interference terms between
the reactive and nonreactive contributions in eq 24. This can
be verified by doing the calculationswithoutthe geometric phase
but settingigp ) 1 in eq 24.8 The short-long dashed curve and
open triangles are based on the calculations which ignore the
geometric phase but useigp ) 1 in eq 24. We see that the short-
long dashed curve and open triangles are essentially identical
to the results which include the geometric phase (the short
dashed curve and open squares).

Figure 11 plots the degeneracy averaged partial differential
cross sections for the H+ H2 (V ) 0, j ) 0) f H2 (V′ ) 1, j′
) 0-3) + H reaction atEtot ) 1.8 eV and include allJ e 10.
The solid curve and solid squares do not include the geometric
phase. The short dashed curve and open squares include the
geometric phase and are based on the vector potential approach.

For the paraf ortho transitions, there are no significant
differences between the differential cross sections computed with
and without the geometric phase. However, for the paraf para
transitions, significant “out-of-phase” behavior occurs between
the differential cross sections computed with and without the
geometric phase. These differences are due to the change in
the sign of the interference terms between the reactive and
nonreactive contributions in eq 24. This can be verified by doing
the calculationswithout the geometric phase but settingigp ) 1
in eq 24.8 The short-long dashed curve and open triangles are
based on the calculations which ignore the geometric phase but
useigp ) 1 in eq 24. We see that the short-long dashed curve
and open triangles are essentially identical to the results which
include the geometric phase (the short dashed curve and open
squares).

Figure 12 plots the degeneracy averaged partial differential
cross sections for the H+ H2 (V ) 0, j ) 0) f H2 (V′ ) 1, j′
) 0-1) + H reaction as a function of total energy and include
all J e 10. The results computed both with (denoted by GP)
and without (denoted by NGP) the geometric phase are plotted.
For the paraf ortho transitions, there are no significant
differences between the differential cross sections computed with
and without the geometric phase for all energies. However, for
the paraf para transitions, significant differences occur between
the differential cross sections computed with and without the
geometric phase. As noted above, these differences are due to
the change in the sign of the interference terms between the
reactive and nonreactive contributions in eq 24 (i.e., they are
due to the sign factor (-1)igp).

Figures 10-12 show that all of the geometric phase effects
cancel out inboth the integral and differential cross sections
when the contributions from even and odd values ofJ e 10
are added togetherexceptfor the effects due to the sign factor
(-1)igp. The cancellation occurs for all of the energies and all
of the initial and final states that we have looked at. Since the
only effect of the geometric phase is the sign factor (-1)igp,
there are no geometric phase effects in the integral and
differential cross sections for paraf ortho or orthof para
transitions. Because the cancellation appears to be due to
symmetry, we expect that these conclusions will also be valid
for fully converged integral and differential cross sections.
Because of the sign factor (-1)igp, significant geometric phase
effects occur for paraf para or orthof ortho transitions even
for relatively low energies. These results are consistent with
the predictions of Mead.8 Mead noted that the geometric phase
causes the real electronic wave function to change sign under
a cyclic permutation of the three identical nuclei. This sign
change gives rise to the sign change (-1)igp between the reactive
and nonreactive contributions to the cross sections (see eqs 24
and 27).8 Thus, the effects of the geometric phase will be
significant whenever the interference between reactive and
nonreactive processes is significant. The change in sign between
the reactive and nonreactive contributions leads to an “out-of-
phase” behavior between the results computed with and without
the geometric phase. This “out-of-phase” behavior is a function
of both the scattering angle and energy.

We note that ourJ ) 0 results for the H+ H2 reaction based
on the BKMP2 potential energy surface are in excellent
agreement with those of Lepetit and Kuppermann32 based on
the LSTH potential energy surface. Our reactive and nonreactive
probabilities computed both with and without the geometric
phase for H+ H2 (V ) 0, j ) 0, m ) 0) f H + H2 (V′ ) 1, j′
) 0, m′ ) 0) are nearly identical to those plotted in Figure 3 of
ref 32. Also, ourJ ) 0 partial integral cross sections computed

Figure 10. Degeneracy averaged partial integral cross sections for H
+ H2 (V ) 0, j ) 0) f H2 (V′ ) 1, j′ ) 0-3) + H summed over all
J e 10 are plotted as a function of energy. The solid curve and solid
squares do not include the geometric phase. The short dashed curve
and open squares include the geometric phase and are based on the
vector potential approach. The short dashed curve and open triangles
are based on the calculations which ignore the geometric phase but
are computed using the opposite sign for the interference terms between
reactive and nonreactive contributions (see eq 24), for the paraf para
transitions. The data points are calculated values and the curves are a
cubic spline fit.
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both with and without the geometric phase for H+ H2 (V ) 0,
j ) 0, m ) 0) f H + H2 (V′ ) 0, j′ ) 2, m′ ) 0) and H+ H2

(V ) 0, j ) 0, m ) 0) f H + H2 (V′ ) 1, j′ ) 0, m′ ) 0) are
nearly identical to those plotted in Figure 4 of ref 32. Our results
and conclusions for the H+ H2 reaction are also consistent
with those of Wu, Kuppermann, and Lepetit33 for energies below
1.2 eV. They conclude that there are essentially no geometric
phase effects in the fully converged integral and differential
cross sections for paraf ortho and orthof para transitions
for energies below 1.2 eV. For paraf para and orthof ortho
transitions, they find “out-of-phase” behavior between the
differential cross sections which are computed with and without
the geometric phase. The “out-of-phase” behavior is attributed
to the sign change (-1)igp between the reactive and nonreactive
contributions to the cross sections. However, our results and
conclusions for the H+ H2 reaction are not consistent with the
results of Wu and Kuppermann65 for energies above 1.8 eV.
Wu and Kuppermann65 predict large effects in the product
rotational state distributions and integral cross sections for para
f ortho and orthof para transitions for energies above 1.8
eV. These results were initially used to help explain the
discrepancies which were observed between the experiments
of Kliner, Adelmann, and Zare66 and several theoretical
calculations68-70 for the D + H2 reaction (see section IV A).
As noted previously at the end of section IV, the discrepancies
between our results and those of Kuppermann and Wu might
be related to the Eckart singularities.51 The methodology which
is used by Kuppermann and Wu is not capable of treating both
Eckart singularities. An accurate treatment ofboth Eckart
singularities is crucial in order to obtain accurate scattering
results especially at the higher energies above 1.8 eV.50

V. Conclusions

We reviewed the fundamental theory for including the
geometric phase in scattering and bound-state calculations based

on a single adiabatic electronic potential energy surface. Two
methods were discussed. In one approach, the standard Born-
Oppenheimer equation for the nuclear motion is solved but with
double-valued boundary conditions. In the second approach, a
generalized Born-Oppenheimer equation for the nuclear motion
is solved using single-valued boundary conditions. The general-
ized Born-Oppenheimer equation for the nuclear motion
contains a vector potential which has the same mathematical
properties as that of a magnetic solenoid centered at the conical
intersection. Either approach is valid and will give the same
results for the physical observables. In different situations, one
approach may be more convenient to implement than the other.

We discussed the recently developed numerical methodology
for solving the generalized Born-Oppenheimer equation for
the nuclear motion. This methodology is based on symmetrized
hyperspherical coordinates and can be used for both quantum
reactive scattering and bound-state calculations. Several ap-
plications using this methodology were discussed. In particular,
the low-energy inelastic scattering of H+ O2, the quantum
reactive scattering of H+ D2, D + H2, and H+ H2, and the
vibrational spectra of HO2 and Na3 were discussed. The
geometric phase alters the symmetry of the nuclear motion wave
function causing it to simultaneously exhibit both even and odd
symmetry under an interchange of any two identical nuclei. This
change in symmetry gives rise to an “out-of-phase” behavior
in the transition probabilities for H+ O2 and the reaction
probabilities for H+ D2 and D+ H2. It also alters many of the
lifetimes and energies of the resonances in H+ O2 and leads
to a reordering of many of the vibrational energy levels in Na3.
Also, the symmetry change must be accounted for in order to
compute the correct vibrational levels for HO2. In the H+ D2

reaction, the effects of the geometric phase completely cancel
out in the partial integral and differential cross sections atall
energies when the contributions from even and odd values ofJ
e 5 are added together. This cancellation appears to be related

Figure 11. Degeneracy averaged partial differential cross sections for H+ H2 (V ) 0, j ) 0) f H2 (V′ ) 1, j′ ) 0-3) + H summed over allJ
e 10 atEtot ) 1.8 eV. The solid curve and solid squares do not include the geometric phase. The short dashed curve and open squares include the
geometric phase and are based on the vector potential approach. The short-long dashed curve and open triangles are based on the calculations
which ignore the geometric phase but are computed using the opposite sign for the interference terms between reactive and nonreactive contributions
(see eq 24), for the paraf para transitions.
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to the alternating symmetry of the WignerD functions with
respect to even and oddJ.

We presented some new results from accurate quantum
reactive scattering calculations for the D+ H2 and H + H2

reactions. The calculations were done both with and without
the geometric phase. The calculations which include the
geometric phase were done using both the double-valued basis
set approach and the vector potential approach. As expected,
these two methods produced nearly identical results. The
difference between the lowest surface function energy for DH2

computed with and without the geometric phase alternates sign
with respect to even and oddJ. The geometric phase also gives
rise to an “out-of-phase” behavior in the reaction probabilities
for D + H2. This “out-of-phase” behavior alternates “phase”
with respect to even and oddJ. The alternating sign and “phase”
behavior is related to the alternating symmetry of the Wigner
D functions with respect to even and oddJ. The effects of the
geometric phase in the D+ H2 reaction completely cancel out
in the partial integral and differential cross sections atall
energies when the contributions from even and odd values ofJ
e 19 are added together. Recent calculations have verified that
this cancellation continues to hold for allJ e 34 and that there
are no significant geometric phase effects in the fully converged
integral and differential cross sections.38 Significant geometric
phase effects are also seen in the reaction probabilities for H+
H2 at high energies. For paraf ortho and orthof para
transitions, the effects of the geometric phase completely cancel
out in the partial integral and differential cross sections atall
energies when the contributions from even and odd values ofJ

e 10 are added together. However, for paraf para and ortho
f ortho transitions, significant geometric phase effects appear
in the partial integral and differential cross sections summed
over all J e 10 even for relatively low energies. These large
geometric phase effects are due to the change in sign of the
interference terms between the reactive and nonreactive con-
tributions to the cross sections. This sign change is a direct
consequence of the double-valuedness of the real adiabatic
electronic wave function which changes sign under a cyclic
permutation of the three identical nuclei in H3.8

All of our quantum reactive scattering calculations to date
for the H3 system indicate that the effects of the geometric phase
completely cancel out in both the integral and differential cross
sections atall energies when the contributions from even and
odd values ofJ are added together. Because the cancellation
appears to be due to symmetry, we expect that it may also hold
for other chemical reactions. Calculations for the H+ O2 f
OH + O reaction are underway.96 The only exception appears
to be the paraf para and orthof ortho transitions in the H+
H2 reaction. The effects of the geometric phase at low energies
for the paraf para and orthof ortho transitions were first
predicted by Mead8 in 1980. He showed that the geometric phase
changes the sign of the interference terms between the reactive
and nonreactive contributions to the cross sections. Thus,
significant geometric phase effects can occur whenever the
interference between reactive and nonreactive processes is
important. Mead claimed that, for low energies, the effects of
the geometric phase can be treated by doing the calculations
without the geometric phase but computing the cross sections

Figure 12. Degeneracy averaged partial differential cross sections for H+ H2 (V ) 0, j ) 0) f H2 (V′ ) 1, j′ ) 0, 1) + H summed over allJ e
10 are plotted as a function of total energy. The figures on the left do not include the geometric phase and are denoted by NGP for no geometric
phase. The figures on the right include the geometric phase and are denoted by GP for geometric phase.
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with the opposite sign on the interference terms. However, for
high energies, an accurate calculation based on the double-
valued basis set approach or the vector potential approach is
required. Our results indicate that Mead’s procedure is probably
accurate even for high energies. All other geometric phase
effects in the cross sections appear to cancel out when summed
over J.

We conclude that the effects of the geometric phase can be
important for chemical reactions which contain three or more
identical nuclei. For these reactions, the geometric phase can
significantly alter the integral and differential cross sections
whenever the interference between reactive and nonreactive
processes is important. Furthermore, it appears that the effects
of the geometric phase for these reactions can be taken into
account by simply applying Mead’s procedure. However, more
work is needed in order to investigate the importance of the
geometric phase in chemical reaction dynamics when more than
one conical intersection is present (such as in the H+ O2 f
OH + O reaction). More work is also needed in order to fully
resolve the remaining discrepancies between the different
theoretical results and experimental data for the H+ H2 reaction
system. Because of its fundamental nature, the H+ H2 reaction
is an excellent candidate for both theoretical and experimental
studies. The differential cross sections for the paraf para and
ortho f ortho transitions in the H+ H2 reaction are probably
the best candidates for an experimental confirmation of geo-
metric phase effects in a chemical reaction.
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(49) Bačić, Z.; Kress, J. D.; Parker, G. A.; Pack, R. T.J. Chem. Phys.

1990, 92, 2344 and references therein.
(50) Kendrick, B. K.; Pack, R. T.; Walker, R. B.; Hayes, E. F.J. Chem.

Phys.1999, 110, 6673.
(51) Eckart, C.Phys. ReV. 1934, 46, 383. Eckart, C.Phys. ReV. 1935,

47, 552.
(52) Kendrick, B. K.J. Chem. Phys.2001, 114, 8796.
(53) Lehoucq, R. B.; Sorensen, D. C.; Vu, P. ARPACK: Fortran

Subroutines for solving large scale eigenvalue problems, Release 2.1,
available from netlib@ornl.gov in the scalapack directory.

(54) Maschoff, K. J.; Sorensen, D. C. InProceedings of the PARA96
Conference, Lingby, Denmark; Wasniewski, J., Dongarra, J., Madsen, K.,
Olesen, D., Eds.; Springer Lecture Notes in Computer Science; Springer,
New York, 1996; Vol. 1184.

(55) Lehoucq, R. B.; Sorensen, D. C.; Yang, C.ARPACK Users’ Guide;
SIAM: Philadelphia, PA, 1998.

(56) Yarkony, D. R.J. Chem. Phys.1998, 109, 7047.
(57) Gordon, M. S.; Glezakou, V. A.; Yarkony, D. R.J. Chem. Phys.

1998, 108, 5657.
(58) Kendrick, B.; Pack, R. T.J. Chem. Phys.1995, 102, 1994.
(59) Johnson, B. R.J. Chem. Phys.1977, 67, 4086. Johnson, B. R.J.

Chem. Phys.1978, 69, 4678.
(60) Barclay, V. J.; Dateo, C. E.; Hamilton, I. P.; Kendrick, B.; Pack,

R. T.; Schwenke, D. W.J. Chem. Phys.1995, 103, 3864.
(61) Scho¨n, J.; Köppel, H.J. Chem. Phys.1995, 103, 9292.
(62) Herzberg, G.Molecular Spectra and Molecular Structure; Van

Nostrand Reinhold: New York, 1955; Vol. I.
(63) Zhang, D. H.; Zhang, J. Z. H.J. Chem. Phys.1994, 101, 3671.
(64) Kendrick, B. K.; Martin, R. L. (unpublished).
(65) Wu, Y. S. M.; Kuppermann, A.Chem. Phys. Lett.1993, 201, 178.
(66) Kliner, D. A. V.; Adelman, D. E.; Zare, R. N.J. Chem. Phys.

1991, 95, 1648.
(67) Adelman, D. E.; Shafer, N. E.; Kliner, D. A. V.; Zare, R. N.J.

Chem. Phys.1992, 97, 7323.
(68) Blais, N. C.; Zhao, M.; Truhlar, D. G.; Schwenke, D. W.; Kouri,

D. J. Chem. Phys. Lett.1990, 166, 11.
(69) Mielke, S. L.; Friedman, R. S.; Truhlar, D. G.; Schwenke, D. W.

Chem. Phys. Lett.1992, 188, 359.
(70) Neuhauser, D.; Judson, R. S.; Kouri, D. J.; Adelman, D. E.; Shafer,

N. E.; Kliner, D. A. V.; Zare, R. N.Science1992, 257, 519.

Feature Article J. Phys. Chem. A, Vol. 107, No. 35, 20036755



(71) Kuppermann, A.; Wu, Y. S. M.Chem. Phys. Lett.1993, 205, 577.
Kuppermann, A.; Wu, Y. S. M.Chem. Phys. Lett.1993, 213, 636E.

(72) Kitsopoulos, T. N.; Buntine, M. A.; Baldwin, D. P.; Zare, R. N.;
Chandler, D. W.Science1993, 260, 1605.

(73) Wu, Y. S. M.; Kuppermann, A.Chem. Phys. Lett.1995, 235, 105.
(74) Kuppermann, A.; Wu, Y. S. M.Chem. Phys. Lett.1995, 241, 229.
(75) Wrede, E.; Schnieder, L.J. Chem. Phys.1997, 107, 786.
(76) de Miranda, M. P.; Clary, D. C.; Castillo, J. F.; Manolopoulos, D.

E. J. Chem. Phys.1998, 108, 3142.
(77) D’Mello, M. J.; Manolopoulos, D. E.; Wyatt, R. E.J. Chem. Phys.

1991, 94, 5985.
(78) D’Mello, M. J.; Manolopoulos, D. E.; Wyatt, R. E.Science1994,

263, 102.
(79) Aoiz, F. J.; Baqares, L.; D’Mello, M. J.; Herrero, V. J.; Saez

Rabanos, V.; Schnieder, L.; Wyatt, R. E.J. Chem. Phys.1994, 101, 5781.
(80) Clary, D. C.Science1998, 279, 1879.
(81) Seekamp-Rahn, K.Untersuchung der Wasserstoffaustauschreaktion

H + D2(V ) 0, j) f HD(V′, ′j′) + D in gekreuzten Molekularstrahlen;
Dissertation zur Erlangung des Doktorgrades der Fakulta¨t für Physik der
Universität Bielefeld, 1996.

(82) Schnieder, L.; Seekamp-Rahn, K.; Borkowski, J.; Wrede, E.;
Welge, K. H.; Aoiz, F. J.; Ban˜ares, L.; D’Mello, M. J.; Herrero, V. J.; Sa´ez
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